People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Karim, Nazmul
University of the West of England
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Graphene-based high-performance pseudo-ductile glass-carbon/epoxy compositescitations
- 2023Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate compositescitations
- 2023High performance graphene-based pseudo-ductile composites
- 2023Toward sustainable composites: graphene-modified jute fiber composites with bio-based epoxy resincitations
- 2022Mechanical and thermal properties of graphene nanoplatelets-reinforced recycled polycarbonate compositescitations
- 2022Sustainable Fiber-Reinforced Compositescitations
- 2021Enhancing the mechanical properties of natural jute yarn suitable for structural applicationscitations
- 2021Sustainable and multifunctional composites of graphene‐based natural jute fiberscitations
- 2021Investigation of the effects of fillers in polymer processingcitations
- 2020Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applicationscitations
- 2020Highly Conductive, Scalable and Machine Washable Graphene-Based E-Textiles for Multifunctional Wearable Electronic Applicationscitations
- 2019Ultrahigh performance of nanoengineered graphene-based natural jute fiber compositescitations
- 2019Ultra-high performance of nano-engineered graphene-based natural jute fiber compositescitations
- 2018High Performance Graphene-Based Natural Fibre Compositescitations
- 2018High-performance graphene-based natural fiber compositescitations
- 2016Inkjet Printing of Graphene Inks for Wearable Electronic Applications
- 2015Towards UV-curable inkjet printing of biodegradable poly (lactic acid) fabricscitations
- 2013Development of UV-Curable Inkjet Printing onto Poly (Lactic Acid) Fabrics
Places of action
Organizations | Location | People |
---|
document
Development of UV-Curable Inkjet Printing onto Poly (Lactic Acid) Fabrics
Abstract
Poly (Lactic Acid) (PLA) fibre has generated great interest as a green materials due to its natural-based origin and biodegradability. However, the wet and dry processing of PLA fabrics is typically carried out at lower temperature because of its lower glass transition temperature and melting point, as well as potential degradation at higher temperature and treatment time. Therefore, inkjet printing of PLA fabrics using UV-curable inks is of interest due to the “ambient” temperature curing of the surface. In this study, PLA fabrics were printed with Mimaki LH-100 (hard), LF-140 (semi-flexible) and LF-200 (flexible) UV-curable inks using a Mimaki UJF-3042 LED UV inkjet printer, and cured with a UV LED. The colour values and Kawabata mechanical properties of the printed samples were evaluated and surface topography using Scanning Electron Microscopy (SEM) analysed.