People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jin, Yan
Queen's University Belfast
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2022Investigating hole making performance of Al 2024-T3/Ti-6Al-4V alloy stacks: A comparative study of conventional drilling, peck drilling and helical millingcitations
- 2022Correlating tool wear to intact carbon fibre contacts during drilling of continuous fibre Reinforced Polymers (CFRP)citations
- 2021Motion control for uniaxial rotational moldingcitations
- 2019Measurement and Analysis of Tool Wear When Drilling CFRP
- 2019An Experimental Investigation of Tool Wear When Conventionally Drilling CFRP
- 2017Simulation Of The Rotational Moulding Process Using Discrete Element Methods
- 2017The Influence of Static and Dynamic Platform Characteristics on Hole Quality, Cycle Time and Tool Wear When Drilling Aerospace Metal Alloy Stacks
- 2016Tool Wear Mechanisms And Tool Wear Modelling For CFRP Drilling
- 2016Tool Wear Mechanisms And Tool Wear Modelling For CFRP Drilling
- 2010Use of Digital Manufacturing to Improve Management Learning in Aerospace Assemblycitations
Places of action
Organizations | Location | People |
---|
document
The Influence of Static and Dynamic Platform Characteristics on Hole Quality, Cycle Time and Tool Wear When Drilling Aerospace Metal Alloy Stacks
Abstract
The need to drill several thousand holes per aircraft through composite and hybrid material stacks is a large challenge for the aerospace assembly process. The ability to produce high quality holes for the lowest tooling costs is at the forefront of requirements for aircraft assembly factories worldwide. Consequently, much research has been conducted into tool design and development, however, the effect of drilling platform characteristics has not been well covered in literature.<br/>Respectively, this research has compared the drilling abilities of a 5-axis precision CNC platform, a hybrid parallel kinematic machine and an articulated robotic arm fitted with a drilling module. In-process force measurement and post process hole and tool analysis methods were used to better understand the effect of static and dynamic platform characteristics on the achievable hole quality, cycle time and tool wear when drilling aerospace metal alloy stacks.<br/>Consequently, tool supplier recommended drilling parameters were found to perform well on the precision CNC platform but were less than optimum for the hybrid parallel kinematic machine and articulated robotic arm fitted with a drilling module. As a result, commercially viable optimised drilling parameters were generated for each platform, leading to improved hole quality, reduced cycle time and a maintained rate of tool wear. This paper has initiated the development of commercially relevant research questions however, further research with more challenging conditions, materials and machining programmes are required as further research.