People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wang, M. M.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
document
Long-term outcomes of 3D-printed bioactive ceramic scaffolds for regeneration of the pediatric skeleton
Abstract
<p>Statement of Purpose: Our group has previously demonstrated the efficacy of 3D printed Bioceramic (3DPBC) scaffolds in the reconstruction of critically-sized craniofacial defects in adult [1] and pediatric animal models. These regenerative technologies may overcome existing challenges of alloplastic reconstruction or autogenous bone graft, the standard of care for pediatric craniofacial reconstruction. Additionally, we have demonstrated that dipyridamole (DIPY) treated scaffolds significantly augment bone regeneration without causing premature cranial suture fusion or malignant degeneration [1], negative effects which have been associated with morphogenic protein 2 (BMP-2). a commonly-used commercial osteogenic agent[2]. In this pediatric animal model, we seek to quantify long-term bone regeneration and scaffold degradation kinetics, and further investigate the safety of 3DPBC scaffolds in vivo including their effects on suture patency and facial development.</p>