People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bjørnetun Haugen, Astri
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Temperature-Dependent Ferroelectric Properties and Aging Behavior of Freeze-Cast Bismuth Ferrite-Barium Titanate Ceramicscitations
- 2023Interfacial Engineering of PVDF-TrFE toward Higher Piezoelectric, Ferroelectric, and Dielectric Performance for Sensing and Energy Harvesting Applicationscitations
- 2023Humidity resistance and recovery of sintered sodium potassium niobate-based piezoelectricscitations
- 2022Freeform injection molding of functional ceramics by hybrid additive manufacturingcitations
- 2022Piezoelectric properties of mechanochemically processed 0.67BiFeO3-0.33BaTiO3 ceramicscitations
- 2021Textured, lead-free piezoelectric ceramics with high figure of merit for energy harvestingcitations
- 2021Low-temperature synthesis of bismuth titanate by modified citrate amorphous methodcitations
- 2019Hybrid atmosphere processing of lead-free piezoelectric sodium potassium niobate-based ceramicscitations
- 2018Exploring the Processing of Tubular Chromite- and Zirconia-Based Oxygen Transport Membranescitations
- 2018Exploring the Processing of Tubular Chromite- and Zirconia-Based Oxygen Transport Membranescitations
- 2018Deposition of highly oriented (K,Na)NbO 3 films on flexible metal substratescitations
- 2018Deposition of highly oriented (K,Na)NbO3 films on flexible metal substratescitations
- 2017Oxygen transport properties of tubular Ce 0.9 Gd 0.1 O 1.95 -La 0.6 Sr 0.4 FeO 3−d composite asymmetric oxygen permeation membranes supported on magnesium oxidecitations
- 2017Ceramic processing of tubular, multilayered oxygen transport membranes (Invited)
- 2017Oxygen transport properties of tubular Ce0.9Gd0.1O1.95-La0.6Sr0.4FeO3−d composite asymmetric oxygen permeation membranes supported on magnesium oxidecitations
- 2016Graphite and PMMA as pore formers for thermoplastic extrusion of porous 3Y-TZP oxygen transport membrane supportscitations
- 2016Processing and characterization of multilayers for energy device fabrication (invited)
- 2015Tailoring of porosity of yttria-stabilized zirconia tubes as supports for oxygen separation membranes
- 2015Tailoring of porosity of yttria-stabilized zirconia tubes as supports for oxygen separation membranes
Places of action
Organizations | Location | People |
---|
document
Tailoring of porosity of yttria-stabilized zirconia tubes as supports for oxygen separation membranes
Abstract
Pure oxygen gas supplied by ceramic oxygen transport membranes can facilitate reduced CO2 emissions through more efficient gasification processes and CO2 capture and storage. Tubular membranes have some advantages compared to planar membranes, such as better resistance to thermal gradients and more straightforward sealing. The active oxygen separation layer in the membrane should be as thin as possible and therefore supported on a highly porous tubular substrate. In this work tubular porous supports of yttria-stabilized zirconia have been manufactured using thermoplastic extrusion. Two types of poreformers (spherical graphite (d50 18 μm) and polymethyl methacrylate (d50 10 μm)) have been used to form connected macropores, since their spherical geometry limits preferential orientation during extrusion. Their difference in decomposition temperatures also allows a high volume fraction of pore formers without deformation during debinding. The influence of the amount of pore formers (relative to the amount of ceramic and thermoplastics) on the microstructure of sintered samples, as well as the extrudability and ease of debinding of the feedstock, has been studied. Ceramics with 1-20 μm pores, open porosities exceeding 55 % and gas permeabilities close to 10-14 m2 could be produced, demonstrating that thermoplastic extrusion is suitable for fabrication of porous and permeable tubes.