Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Younesi, Reza

  • Google
  • 22
  • 63
  • 652

Uppsala University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (22/22 displayed)

  • 2022Importance of Superstructure in Stabilizing Oxygen Redox in P3-Na0.67Li0.2Mn0.8O241citations
  • 2022Concentrated LiFSI-€“Ethylene Carbonate Electrolytes and Their Compatibility with High-Capacity and High-Voltage Electrodes30citations
  • 2022Importance of superstructure in stabilizing oxygen redox in P3- Na0.67Li0.2Mn0.8O241citations
  • 2022Importance of superstructure in stabilizing oxygen redox in P3- Na 0.67 Li 0.2 Mn 0.8 O 241citations
  • 2021On the Manganese Dissolution Process from LiMn2O4 Cathode Materials48citations
  • 2021Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na0.67Mg0.2Mn0.8O222citations
  • 2021Prospects for Improved Magnesocene-Based Magnesium Battery Electrolytes3citations
  • 2021Importance of superstructure in stabilizing oxygen redox in P3- Na0.67Li0.2Mn0.8O241citations
  • 2020Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na 0.67 Mg 0.2 Mn 0.8 O 222citations
  • 2020Vacancy enhanced oxygen redox reversibility in P3-type magnesium doped sodium manganese oxide Na0.67Mg0.2Mn0.8O222citations
  • 2020How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi0.44Mn1.56O4 with Fixed Oxygen Content49citations
  • 2020How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi0.44Mn1.56O4with Fixed Oxygen Content49citations
  • 2020How Mn/Ni Ordering Controls Electrochemical Performance in High-Voltage Spinel LiNi 0.44 Mn 1.56 O 4 with Fixed Oxygen Content49citations
  • 2020Acetonitrile‐Based Electrolytes for Rechargeable Zinc Batteries32citations
  • 2019Towards room temperature operation of all-solid-state Na-ion batteries through polyester-polycarbonate-based polymer electrolytes58citations
  • 2017Electrochemical performance and interfacial properties of Li-metal in lithium bis(fluorosulfonyl)imide based electrolytes25citations
  • 2017Simple and Green Method for Fabricating V2O5·nH2O Nanosheets for Lithium Battery Applicationcitations
  • 2015Plasma properties during magnetron sputtering of lithium phosphorous oxynitride thin films22citations
  • 2015Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studies21citations
  • 2014Ionic conductivity and the formation of cubic CaH 2 in the LiBH 4 -Ca(BH 4 ) 2 composite18citations
  • 2014Ionic conductivity and the formation of cubic CaH2 in the LiBH4-Ca(BH4)2 composite18citations
  • 2014In Situ Synchrotron XRD on a Capillary Li-O2 Battery Cellcitations

Places of action

Chart of shared publication
Grey, Clare P.
1 / 39 shared
Clement, Raphaele J.
1 / 1 shared
Bassey, Euan N.
1 / 1 shared
Kim, Eun Jeong
7 / 7 shared
Duda, Laurent
4 / 6 shared
Sehrawat, Divya
4 / 4 shared
Ma, Le Anh
7 / 7 shared
Sharma, Neeraj
4 / 15 shared
Armstrong, A. Robert
3 / 13 shared
Maughan, Philip A.
1 / 2 shared
Brandell, Daniel
4 / 26 shared
Hernández, Guiomar
1 / 4 shared
Edström, Kristina
4 / 18 shared
Aktekin, Burak
4 / 7 shared
Grey, Clare
3 / 7 shared
Duda, Laurent C.
3 / 4 shared
Armstrong, Anthony Robert
2 / 6 shared
Clément, Raphaële J.
3 / 4 shared
Maughan, Philip
3 / 3 shared
Bassey, Euan
3 / 3 shared
Liu, Haidong
1 / 1 shared
Tesfamhret, Yonas
1 / 3 shared
Berg, Erik
1 / 2 shared
Chai, Zhigang
1 / 1 shared
Chadwick, Alan V.
3 / 20 shared
Irvine, John T. S.
2 / 44 shared
Pickup, David M.
3 / 20 shared
Armstrong, Robert
2 / 9 shared
Maughan, Philip Adam
3 / 3 shared
Johansson, Patrik
1 / 12 shared
Schwarz, Rainer
1 / 1 shared
Randon-Vitanova, Anna
1 / 2 shared
Jankowski, Piotr
1 / 15 shared
Wachtler, Mario
1 / 1 shared
Irvine, John Thomas Sirr
1 / 169 shared
Marzano, Fernanda
3 / 3 shared
Valvo, Mario
3 / 13 shared
Massel, Felix
3 / 4 shared
Ahmadi, Majid
2 / 28 shared
Zipprich, Wolfgang
3 / 3 shared
Hahlin, Maria
3 / 6 shared
Ahmadi, M.
1 / 11 shared
Etman, Ahmed S.
2 / 3 shared
Sun, Junliang
2 / 3 shared
Carboni, Marco
1 / 1 shared
Mindemark, Jonas
1 / 9 shared
Sångeland, Christofer
1 / 1 shared
Bardé, Fanny
1 / 3 shared
Inge, Andrew Kentaro
1 / 1 shared
Jiaru, Xu
1 / 1 shared
Stamate, Eugen
1 / 21 shared
Holtappels, Peter
1 / 28 shared
Christiansen, Ane Sælland
1 / 2 shared
Thydén, Karl Tor Sune
1 / 20 shared
Norby, Poul
4 / 34 shared
Storm, Mie Møller
2 / 3 shared
Johnsen, Rune E.
2 / 15 shared
Vegge, Tejs
2 / 36 shared
Blanchard, Didier
1 / 10 shared
Mýrdal, Jón Steinar Garðarsson
2 / 3 shared
Riktor, Marit Dalseth
2 / 2 shared
Viskinde, Rasmus
2 / 2 shared
Sveinbjörnsson, Dadi Þorsteinn
2 / 5 shared
Chart of publication period
2022
2021
2020
2019
2017
2015
2014

Co-Authors (by relevance)

  • Grey, Clare P.
  • Clement, Raphaele J.
  • Bassey, Euan N.
  • Kim, Eun Jeong
  • Duda, Laurent
  • Sehrawat, Divya
  • Ma, Le Anh
  • Sharma, Neeraj
  • Armstrong, A. Robert
  • Maughan, Philip A.
  • Brandell, Daniel
  • Hernández, Guiomar
  • Edström, Kristina
  • Aktekin, Burak
  • Grey, Clare
  • Duda, Laurent C.
  • Armstrong, Anthony Robert
  • Clément, Raphaële J.
  • Maughan, Philip
  • Bassey, Euan
  • Liu, Haidong
  • Tesfamhret, Yonas
  • Berg, Erik
  • Chai, Zhigang
  • Chadwick, Alan V.
  • Irvine, John T. S.
  • Pickup, David M.
  • Armstrong, Robert
  • Maughan, Philip Adam
  • Johansson, Patrik
  • Schwarz, Rainer
  • Randon-Vitanova, Anna
  • Jankowski, Piotr
  • Wachtler, Mario
  • Irvine, John Thomas Sirr
  • Marzano, Fernanda
  • Valvo, Mario
  • Massel, Felix
  • Ahmadi, Majid
  • Zipprich, Wolfgang
  • Hahlin, Maria
  • Ahmadi, M.
  • Etman, Ahmed S.
  • Sun, Junliang
  • Carboni, Marco
  • Mindemark, Jonas
  • Sångeland, Christofer
  • Bardé, Fanny
  • Inge, Andrew Kentaro
  • Jiaru, Xu
  • Stamate, Eugen
  • Holtappels, Peter
  • Christiansen, Ane Sælland
  • Thydén, Karl Tor Sune
  • Norby, Poul
  • Storm, Mie Møller
  • Johnsen, Rune E.
  • Vegge, Tejs
  • Blanchard, Didier
  • Mýrdal, Jón Steinar Garðarsson
  • Riktor, Marit Dalseth
  • Viskinde, Rasmus
  • Sveinbjörnsson, Dadi Þorsteinn
OrganizationsLocationPeople

conferencepaper

In Situ Synchrotron XRD on a Capillary Li-O2 Battery Cell

  • Norby, Poul
  • Storm, Mie Møller
  • Johnsen, Rune E.
  • Younesi, Reza
Abstract

In situ studies give an opportunity to explore systems with a minimum of external interference. As Li-air batteries hold the promise for a future battery technology the investigation of the discharge and charge components of the cathode and anode is of importance, as these components may hold the key to making a large capacity rechargeable battery[1]. Different design for in situ XRD studies of Li-O2 batteries has been published, based on coin cell like configuration[2] [3] or Swagelok designs [4]. Capillary batteries have been investigated for the Li-ion system since its development[5], but no capillary batteries of Li-air has yet been designed. Some of the advantage of the capillary battery design lies in its ability to separate the cathode and anode and avoid the use of glass fiber or separators, which may enable ex situ analysis of battery components. The battery design consist of a electrolyte filled capillary with anode and cathode in each end suspended on stainless steel wires, the oxygen in-let is placed on the cathode side of the capillary with a flushing system for oxygen in-let. In this study we present a flexible design of a capillary based Li-O2 battery with discharge and charge investigated in dimethxyethane (DME) with synchrotron XRD. The in situ study in these batteries show clearly how Li2O2 precipitates on the cathode side of the battery during discharge (see Figure), as the Li2O2 reflections at 21.2°, 22.5° and 37.1° grows. The reflection at 27.8, 28.4 and 32.16 is from a stainless steel wire where the cathode is attached. The in situ XRD measurements show how the Li2O2 growth depend on current discharge rate and how the FWHM changes dependent on reflection and charge/discharge.Several cells were tested both ex situ and in situ, and in situ XRD for 1st discharge/charge and 2nd discharge/charge of the battery cell were measured, to give a better understanding of the electrochemistry in the Li-O2battery. 1. Girishkumar, G., et al.. The Journal of Physical Chemistry Letters, 2010. 1(14): p. 2193-2203. 2. Lim, H., E. Yilmaz, and H.R. Byon, The Journal of Physical Chemistry Letters, 2012. 3(21): p. 3210-3215. 3. Ryan, K.R., et al.,. Journal of Materials Chemistry A, 2013. 1(23): p. 6915-6919. 4. Shui, J.-L., et al., Nat Commun, 2013. 4. 5. Johnsen, R.E. and P. Norby,. Journal of Applied Crystallography, 2013. 46(6): p. 1537-1543. [Formula]

Topics
  • impedance spectroscopy
  • stainless steel
  • x-ray diffraction
  • Oxygen
  • glass
  • glass
  • precipitate
  • wire