People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Honecker, Dirk
Universidad de Cantabria
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Small-angle neutron scattering analysis in Sn-Ag Lead-free solder alloyscitations
- 2022Uniaxial polarization analysis of bulk ferromagnets: theory and first experimental resultscitations
- 2022Magnetic nanoprecipitates and interfacial spin disorder in zero-field-annealed Ni50Mn45In5 Heusler alloys as seen by magnetic small-angle neutron scatteringcitations
- 2022Magnetic nanoprecipitates and interfacial spin disorder in zero-field-annealed Ni<sub>50</sub>Mn<sub>45</sub>In<sub>5</sub> Heusler alloys as seen by magnetic small-angle neutron scatteringcitations
- 2022Controlling the rotation modes of hematite nanospindles using dynamic magnetic fields
- 2021TaC Precipitation Kinetics During Cooling of Co−Re‐Based Alloyscitations
- 2021Clustering in Ferronematics - the Effect of Magnetic Collective Orderingcitations
- 2021Unraveling Nanostructured Spin Textures in Bulk Magnetscitations
- 2020Field Dependence of Magnetic Disorder in Nanoparticlescitations
- 2020Magnetic Guinier lawcitations
- 2020Magnetic structure factor of correlated moments in small-angle neutron scatteringcitations
- 2020The benefits of a Bayesian analysis for the characterization of magnetic nanoparticlescitations
- 2020The benefits of a Bayesian analysis for the characterization of magnetic nanoparticlescitations
- 2020Unraveling Nanostructured Spin Textures in Bulk Magnets
- 2019Field Dependence of Magnetic Disorder in Nanoparticlescitations
- 2019Evidence for the formation of nanoprecipitates with magnetically disordered regions in bulk $mathrm{Ni}_{50}mathrm{Mn}_{45}mathrm{In}_{5}$ Heusler alloys
- 2019Using the singular value decomposition to extract 2D correlation functions from scattering patterns
- 2019Experimental observation of third-order effect in magnetic small-angle neutron scatteringcitations
- 2019The magnetic structure factor of correlated moments in small-angle neutron scatteringcitations
- 2019The magnetic structure factor of correlated nanoparticle moments in small-angle neutron scattering
- 2019Magnetic ordering of the martensite phase in Ni-Co-Mn-Sn-based ferromagnetic shape memory alloyscitations
- 2019Transverse and longitudinal spin-fluctuations in INVAR Fe0.65Ni0.35.citations
- 2018Dipolar-coupled moment correlations in clusters of magnetic nanoparticlescitations
- 2018Dipolar-coupled moment correlations in clusters of magnetic nanoparticlescitations
- 2018Dipolar-coupled moment correlations in clusters of magnetic nanoparticlescitations
- 2016Magnetic small-angle neutron scattering on bulk metallic glasses
- 2013Magnetization reversal in Nd-Fe-B based nanocomposites as seen by magnetic small-angle neutron scatteringcitations
- 2013Analysis of magnetic neutron-scattering data of two-phase ferromagnetscitations
Places of action
Organizations | Location | People |
---|
document
Evidence for the formation of nanoprecipitates with magnetically disordered regions in bulk $mathrm{Ni}_{50}mathrm{Mn}_{45}mathrm{In}_{5}$ Heusler alloys
Abstract
Shell ferromagnetism is a new functional property of certain Heusler alloys which has been recently observed in ${Ni}_{50}{Mn}_{45}{In}_{5}$. We report the results of a comparative study of the magnetic microstructure of bulk ${Ni}_{50}{Mn}_{45}{In}_{5}$ Heusler alloys using magnetometry, synchrotron x-ray diffraction, and magnetic small-angle neutron scattering (SANS). By combining unpolarized and spin-polarized SANS (POLARIS) we demonstrate that a number of important conclusions regarding the mesoscopic spin structure can be made. In particular, the analysis of the magnetic neutron data suggests that nanoprecipitates with an effective ferromagnetic component form in an antiferromagnetic matrix on field annealing at $700 \, {K}$. These particles represent sources of perturbation, which seem to give rise to magnetically disordered regions in the vicinity of the particle-matrix interface. Analysis of the spin-flip SANS cross section via the computation of the correlation function yields a value of $ 55 \, {nm}$ for the particle size and $ 20 \, {nm}$ for the size of the spin-canted region.