Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hogrefe, Katharina

  • Google
  • 2
  • 4
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019A dissipation potential approach to describe flow instability in alloys during hot deformationcitations
  • 2019A flow instability criterion for alloys during hot deformation2citations

Places of action

Chart of shared publication
Wang, Peng
2 / 18 shared
Piot, David
2 / 20 shared
Montheillet, Frank
2 / 30 shared
Poletti, Maria Cecilia
2 / 79 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Wang, Peng
  • Piot, David
  • Montheillet, Frank
  • Poletti, Maria Cecilia
OrganizationsLocationPeople

document

A dissipation potential approach to describe flow instability in alloys during hot deformation

  • Hogrefe, Katharina
  • Wang, Peng
  • Piot, David
  • Montheillet, Frank
  • Poletti, Maria Cecilia
Abstract

Flow instability is the onset of heterogeneous flow intensifying flow localization and leading to further damage in alloys during hot deformation. Some phenomenological approaches in the literature do not account for the microstructure changes of the material. In order to overcome this problem, we introduce a dissipation potential approach as a function of the plastic strain rate, the evolution rate of dislocation density and the heat flux, D(ε ̇_p,ρ ̇,q), to describe the flow instability during hot deformation. This approach considers the principle of orthogonality proposed by HANS ZIEGLER and describes large plastic flow with far-from-equilibrium thermodynamics. Moreover, the evolution rate of dislocation density ρ ̇is involved and the transient energy dissipation comprises mechanical part due to dislocation movement and thermal part by heat transfer. The necessary condition for stable flow is that the dissipation potential D(ε ̇_p,ρ ̇,q)is convex, i.e. the associated Hessian is non-negative. This approach connects the continuum mechanics, non-linear non-equilibrium thermodynamics and microstructure evolution when dealing with hot deformation problems. In this work, the approach was applied to describe the behavior of Ti6Al4V during hot deformation, and using a Kocks-Mecking type model to describe the flow stresses as a function of the dislocation density.

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • polymer
  • dislocation