Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Piot, David

  • Google
  • 20
  • 45
  • 227

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (20/20 displayed)

  • 2024Substructure heterogeneity during hot deformation of ferritic stainless steels - Experimental characterization and discussion assisted by a mean-field model1citations
  • 2024Nucleation of recrystallization: A new approach to consider the evolution of the substructure in the systemcitations
  • 2021An Attempt to Assess Recovery/Recrystallization Kinetics in Tungsten at High Temperature Using Statistical Nanoindentation Analysis7citations
  • 2019A dissipation potential approach to describe flow instability in alloys during hot deformationcitations
  • 2019A flow instability criterion for alloys during hot deformation2citations
  • 2018A semitopological mean-field model of discontinuous dynamic recrystallization ; A semitopological mean-field model of discontinuous dynamic recrystallization: Toward a correct and rapid prediction of grain-size distribution10citations
  • 2013Modeling Grain Boundary Motion and Dynamic Recrystallization in Pure Metals27citations
  • 2013Mechanical modeling of macroscopic behavior for anisotropic and heterogeneous metal alloys4citations
  • 2012Hot Deformation and Dynamic Recrystallization of the Beta Phase in Titanium Alloys 7th International Conference on Processing and Manufacturing of Advanced Materials - Quebec City, CANADA - AUG 01-05, 2011; THERMEC 2011, PTS 1-417citations
  • 2010Microtexture tracking in hot-deformed polycrystalline aluminium: Experimental results36citations
  • 2010Integrated modelling of precipitation during friction stir welding of 2024-T3 aluminium alloy12citations
  • 2010Microtexture tracking in hot-deformed polycrystalline aluminium: Comparison with simulations19citations
  • 2010Rheological Behavior of Pure Binary Ni-Nb Model Alloys ; 6th International Conference on Processing and Manufacturing of Advanced Materials ; AUG 25-29, 2009 ; Berlin, GERMANY3citations
  • 2009DEFORMATION MICROSTRUCTURE AND TEXTURE EVOLUTION OF {110}<112> Al-0.3wt.%Mn SINGLE CRYSTALS COMPRESSED IN A CHANNEL-DIEcitations
  • 2008MICROSTRUCTURAL MODELING OF COLD CREEP/FATIGUE IN NEAR ALPHA TITANIUM ALLOYS USING CELLULAR AUTOMATA METHODcitations
  • 2007Microtexture Development and Flow Stress Saturation during Triaxial Forging of an Al-3Mg-Sc(Zr) Alloycitations
  • 2006Texture and microtexture development in an Al–3Mg–Sc(Zr) alloy deformed by triaxial forging42citations
  • 2005Hot plane strain compression testing of aluminum alloys by channel-die compression27citations
  • 2005A Rapid Deformation Texture Model Incorporating Grain Interactions: Application to Aluminium Hot Rolling Textures2citations
  • 2004A rapid deformation texture model incorporating grain interactions18citations

Places of action

Chart of shared publication
Kermouche, Guillaume
4 / 48 shared
Latu-Romain, Laurence
2 / 16 shared
Sourisseau, Thomas
2 / 2 shared
Meyer, Nicolas
2 / 6 shared
Hennocque, Louis
2 / 2 shared
Favre, Julien
3 / 16 shared
Montheillet, Frank
8 / 30 shared
Lenci, Matthieu
1 / 11 shared
Richou, Marianne
1 / 2 shared
Gallais, Laurent
1 / 11 shared
Karanja, Liz
1 / 1 shared
Minissale, Marco
1 / 10 shared
Durif, Alan
1 / 1 shared
Maurice, Claire
3 / 33 shared
Hogrefe, Katharina
2 / 2 shared
Wang, Peng
2 / 18 shared
Poletti, Maria Cecilia
2 / 79 shared
Montouchet, Aurore
1 / 7 shared
Jonas, John Joseph
1 / 2 shared
Perrin, Gilles
1 / 4 shared
Smagghe, Guillaume
1 / 1 shared
Desrayaud, Christophe
3 / 28 shared
Tang, Ning
1 / 2 shared
Koizumi, Yuichiro
1 / 4 shared
Fabregue, D.
1 / 39 shared
Maire, Eric
1 / 58 shared
Chiba, Akihiko
1 / 11 shared
Chahaoui, O.
1 / 2 shared
Fares, M. L.
1 / 1 shared
Pallot, Lois
1 / 1 shared
Driver, Julian, H.
7 / 24 shared
Quey, Romain
2 / 14 shared
Driver, Julian Haworth
2 / 5 shared
Hersent, Emmanuel
1 / 2 shared
Semiatin, S. L.
1 / 3 shared
Miszczyk, Magdalena
1 / 2 shared
Paul, Henryk
1 / 12 shared
Boutana, N.
1 / 1 shared
Bocher, P.
1 / 18 shared
Jahazi, M.
1 / 7 shared
Ringeval, S.
1 / 6 shared
Ringeval, Sylvain
1 / 4 shared
Klöcker, Helmut
1 / 16 shared
Guiglionda, Gilles
1 / 4 shared
Robert, Willie
2 / 2 shared
Chart of publication period
2024
2021
2019
2018
2013
2012
2010
2009
2008
2007
2006
2005
2004

Co-Authors (by relevance)

  • Kermouche, Guillaume
  • Latu-Romain, Laurence
  • Sourisseau, Thomas
  • Meyer, Nicolas
  • Hennocque, Louis
  • Favre, Julien
  • Montheillet, Frank
  • Lenci, Matthieu
  • Richou, Marianne
  • Gallais, Laurent
  • Karanja, Liz
  • Minissale, Marco
  • Durif, Alan
  • Maurice, Claire
  • Hogrefe, Katharina
  • Wang, Peng
  • Poletti, Maria Cecilia
  • Montouchet, Aurore
  • Jonas, John Joseph
  • Perrin, Gilles
  • Smagghe, Guillaume
  • Desrayaud, Christophe
  • Tang, Ning
  • Koizumi, Yuichiro
  • Fabregue, D.
  • Maire, Eric
  • Chiba, Akihiko
  • Chahaoui, O.
  • Fares, M. L.
  • Pallot, Lois
  • Driver, Julian, H.
  • Quey, Romain
  • Driver, Julian Haworth
  • Hersent, Emmanuel
  • Semiatin, S. L.
  • Miszczyk, Magdalena
  • Paul, Henryk
  • Boutana, N.
  • Bocher, P.
  • Jahazi, M.
  • Ringeval, S.
  • Ringeval, Sylvain
  • Klöcker, Helmut
  • Guiglionda, Gilles
  • Robert, Willie
OrganizationsLocationPeople

document

A dissipation potential approach to describe flow instability in alloys during hot deformation

  • Hogrefe, Katharina
  • Wang, Peng
  • Piot, David
  • Montheillet, Frank
  • Poletti, Maria Cecilia
Abstract

Flow instability is the onset of heterogeneous flow intensifying flow localization and leading to further damage in alloys during hot deformation. Some phenomenological approaches in the literature do not account for the microstructure changes of the material. In order to overcome this problem, we introduce a dissipation potential approach as a function of the plastic strain rate, the evolution rate of dislocation density and the heat flux, D(ε ̇_p,ρ ̇,q), to describe the flow instability during hot deformation. This approach considers the principle of orthogonality proposed by HANS ZIEGLER and describes large plastic flow with far-from-equilibrium thermodynamics. Moreover, the evolution rate of dislocation density ρ ̇is involved and the transient energy dissipation comprises mechanical part due to dislocation movement and thermal part by heat transfer. The necessary condition for stable flow is that the dissipation potential D(ε ̇_p,ρ ̇,q)is convex, i.e. the associated Hessian is non-negative. This approach connects the continuum mechanics, non-linear non-equilibrium thermodynamics and microstructure evolution when dealing with hot deformation problems. In this work, the approach was applied to describe the behavior of Ti6Al4V during hot deformation, and using a Kocks-Mecking type model to describe the flow stresses as a function of the dislocation density.

Topics
  • density
  • impedance spectroscopy
  • microstructure
  • polymer
  • dislocation