People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vinci, Tommaso
École Polytechnique
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Shock-driven amorphization and melt in Fe$_2$O$_3$
- 2023Transonic dislocation propagation in diamond.citations
- 2023Zr-based metallic glasses Hugoniot under laser shock compression and spall strength evolution with the strain rate >10$^7$ s$^{-1}$)citations
- 2023Zr-based metallic glasses Hugoniot under laser shock compression and spall strength evolution with the strain rate (> 107 s-1)citations
- 2023Transonic dislocation propagation in diamondcitations
- 2022Zr-based bulk metallic glasses equation of state under laser shock compression and spall strength
- 2022Zr-based bulk metallic glasses equation of state under laser shock compression and spall strengths.
- 2021Spin State of Iron in Dynamically Compressed Olivine Melt
- 2021Metallization of Shock-Compressed Liquid Ammoniacitations
- 2021X-ray powder diffraction in reflection geometry on multi-beam kJ-type laser facilitiescitations
- 2020Equation of state and electrical conductivity of warm dense ammonia at the conditions of large icy planets' interiors.
- 2020In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressurescitations
- 2020Direct Observation of Shock‐Induced Disordering of Enstatite Below the Melting Temperaturecitations
- 2020Ultrafast X-ray Diffraction Measurements Of shock-Compressed Fe and Fe-Si Alloys
- 2017Shock response to solid germanium
- 2016Direct structural investigation of shock compressed silicates from x-ray diffraction
- 2016Kinetics of the iron α -∊ phase transition at high-strain rates: Experiment and modelcitations
- 2014Melting of iron close to Earth's inner core boundary conditions detected by XANES spectroscopy in laser shock experiment
- 2010Large scale simulations of quasi-isentropic compression in Fe and Al
- 2009Microstructural investigation of melting in laser-shocked recovered iron foils
- 2006Laser-driven shock waves for the study of extreme matter statescitations
Places of action
Organizations | Location | People |
---|
document
Microstructural investigation of melting in laser-shocked recovered iron foils
Abstract
For a better characterization of the melting of shocked iron, we have carried out a study that combines a visual observation of recovered samples in the micrometer range along with in-situ time-resolved diagnostics. High-power laser shots were carried out at LULI 2000, France on 100 μm foils. A velocity interferometer system (VISAR) was used to measure the free surface velocity. Hydrodynamic simulations were performed. Then, the pressure and the temperature in solid iron were reconstructed through the iron foil using the Rankine-Hugoniot relations. These data were compared with Scanning Electron Microscope (SEM) analysis of recovered targets and ejecta that were collected on transparent polycarbonate plates placed on the opposite face. The evolution of the molten part of the target in relation with the analysis of the different categories of recovered ejecta gives useful indications on the potential of laser shock techniques for studying the melting of iron under planetary core conditions....