Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Guyot, F. J.

  • Google
  • 2
  • 34
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2016Direct structural investigation of shock compressed silicates from x-ray diffractioncitations
  • 2014Melting of iron close to Earth's inner core boundary conditions detected by XANES spectroscopy in laser shock experimentcitations

Places of action

Chart of shared publication
Alonso-Mori, R.
1 / 1 shared
Sokaras, D.
1 / 2 shared
Fiquet, G.
1 / 6 shared
Granados, E.
1 / 3 shared
Nagler, B.
2 / 10 shared
Glenzer, S.
1 / 1 shared
Ravasio, A.
2 / 6 shared
Bolis, R.
1 / 1 shared
Kroll, T.
1 / 2 shared
Vinci, Tommaso
2 / 21 shared
Benuzzi-Mounaix, A.
1 / 7 shared
Lee, H. J.
2 / 7 shared
Morard, G.
2 / 4 shared
Gleason, A. E.
1 / 3 shared
Brambrink, E.
1 / 9 shared
Chart of publication period
2016
2014

Co-Authors (by relevance)

  • Alonso-Mori, R.
  • Sokaras, D.
  • Fiquet, G.
  • Granados, E.
  • Nagler, B.
  • Glenzer, S.
  • Ravasio, A.
  • Bolis, R.
  • Kroll, T.
  • Vinci, Tommaso
  • Benuzzi-Mounaix, A.
  • Lee, H. J.
  • Morard, G.
  • Gleason, A. E.
  • Brambrink, E.
OrganizationsLocationPeople

document

Melting of iron close to Earth's inner core boundary conditions detected by XANES spectroscopy in laser shock experiment

  • Toleikis, S.
  • Harmand, M.
  • Nagler, B.
  • Nakatsutsumi, M.
  • Bouchet, J.
  • Ravasio, A.
  • Zastrau, U.
  • Musella, R.
  • Recoules, V.
  • Fourment, C.
  • Morard, G.
  • Feng, Y.
  • Galtier, E.
  • Zhu, D.
  • Ozaki, N.
  • Mazevet, S.
  • Vinci, Tommaso
  • Guyot, F. J.
  • Benuzzi, A.
  • Miyanishi, K.
  • Denoeud, A.
  • Lee, H. J.
  • Dorchies, F.
  • Gaudin, J.
  • Koenig, M.
Abstract

When modeling the Earth's interior, essential features lie in our knowledge of iron and iron alloys physical properties at extreme pressures and temperatures. While the density profile of the Earth's interior is rather well constrained from seismic data, the temperature at the boundary between the solid inner core and liquid outer core (ICB, Inner Core Boundary), where the pressure is estimated to be of 330GPa, remains up to now largely uncertain. It corresponds to the melting temperature of an iron alloy containing a small but unconstrained amount of impurities [1]. As a reference, the melting temperature of pure iron at ICB pressure condition is thus one of the most important parameters of earth and planetary interiors physics. For that reason, measuring the iron melting curve at conditions corresponding to the Earth Inner Core Boundary (ICB) under pressure of 330GPa has eluded scientists for several decades. Here we used X-ray Absorption Near Edge Structure (XANES) spectroscopy with ultrafast X-ray Free Electron Laser (XFEL) sources coupled to a laser shock experiment, to detect the state of iron along the shock Hugoniot up to 420GPa (+/- 50) and 10800K (+/- 1390). Our results allows to put an upper constrain on the high pressure-melting curve of iron by detecting well beyond recent diamond-anvil cell measurements performed at 150GPa [2]. [1] J.P. Poirier, Phys. Earth Planet. Int. 85, 319 (1994). [2] S. Anzellini et al., Science 340, 464 (2013)....

Topics
  • density
  • impedance spectroscopy
  • experiment
  • iron
  • melting temperature
  • iron alloy