People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sarangapani, Prasad
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
document
Non-equilibrium Green's function predictions of band tails and band gap narrowing in III-V semiconductors and nanodevices
Abstract
High-doping induced Urbach tails and band gap narrowing play a significant role in determining the performance of tunneling devices and optoelectronic devices such as tunnel field-effect transistors (TFETs), Esaki diodes and light-emitting diodes. In this work, Urbach tails and band gap narrowing values are calculated explicitly for GaAs, InAs, GaSb and GaN as well as ultra-thin bodies and nanowires of the same. Electrons are solved in the non-equilibrium Green's function method in multi-band atomistic tight binding. Scattering on polar optical phonons and charged impurities is solved in the self-consistent Born approximation. The corresponding nonlocal scattering self-energies as well as their numerically efficient formulations are introduced for ultra-thin bodies and nanowires. Predicted Urbach band tails and conduction band gap narrowing agree well with experimental literature for a range of temperatures and doping concentrations. Polynomial fits of the Urbach tail and band gap narrowing as a function of doping are tabulated for quick reference.