People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spörk, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Mechanical properties of additively manufactured polymeric implant materials in dependence of microstructure, temperature and strain-rate
- 2020Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structurescitations
- 2019Optimisation of the interfacial bonding in polypropylene filled with different types of glass spheres produced by extrusion-based additive manufacturing
- 2019Mechanical Recyclability of Polypropylene Composites Produced by Material Extrusion-Based Additive Manufacturingcitations
- 2019Erhöhung der Bruchzähigkeit durch Multischichtaufbau
- 2018Adhesion of standard filament materials to different build platforms in material extrusion additive manufacturing
- 2018Polypropylene Filled With Glass Spheres in Extrusion‐Based Additive Manufacturingcitations
- 20173D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts
- 2017Shrinkage and Warpage Optimization of Expanded-Perlite-Filled Polypropylene Composites in Extrusion-Based Additive Manufacturingcitations
- 2017Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabricationcitations
- 2016Bonding Forces in Fused Filament Fabrication
- 2016Haftungsvorhersage und Haftungsverbesserung im Fused Filament Fabrication (FFF) Prozess
- 2016Special Materials and Technologies for Fused Filament Fabrication
Places of action
Organizations | Location | People |
---|
document
Special Materials and Technologies for Fused Filament Fabrication
Abstract
In additive manufacturing Fused Filament Fabrication (FFF) is outstanding since common thermoplastics can be used. Thus, this method can meet the industry’s demands of producing complex designs in limited series with familiar materials. To fully exploit the technique’s potential, new printing materials have to be developed, as currently only a few types of materials (mostly PLA and ABS) are commercially available for FFF. Therefore, the Chair of Polymer Processing is systematically developing novel materials for their use in FFF.<br/>For example, specially filled polyolefins with low shrinkage coefficients and good dimensional stabilities are investigated. These materials provide several advantages compared to existing filament types, such as higher impact strength and better temperature stability. Moreover, wood fibre reinforced materials for FFF are under investigation. The biggest challenge with these materials is an accurate production of perfectly round filaments, as the additional fibres prevent elongation and therefore a proper calibration. Another field of research are highly filled materials, wherein the polymer acts as the binder system. After printing, the parts are debound in a solvent and sintered in a furnace similar to powder injection moulded parts. Currently, compounds filled with highest possible amounts of metal and ceramic powders are being developed. So far, compounds with a maximum of 91 wt.% (55 vol.%) of stain-less steel are still processable.<br/>For the systematic development of new materials for FFF, mechanical, flow, adhesion and shrinkage properties of materials have been characterised, compared and linked to printability.