People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spörk, Martin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2022Mechanical properties of additively manufactured polymeric implant materials in dependence of microstructure, temperature and strain-rate
- 2020Using Compliant Interlayers as Crack Arresters in 3-D-Printed Polymeric Structurescitations
- 2019Optimisation of the interfacial bonding in polypropylene filled with different types of glass spheres produced by extrusion-based additive manufacturing
- 2019Mechanical Recyclability of Polypropylene Composites Produced by Material Extrusion-Based Additive Manufacturingcitations
- 2019Erhöhung der Bruchzähigkeit durch Multischichtaufbau
- 2018Adhesion of standard filament materials to different build platforms in material extrusion additive manufacturing
- 2018Polypropylene Filled With Glass Spheres in Extrusion‐Based Additive Manufacturingcitations
- 20173D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts
- 2017Shrinkage and Warpage Optimization of Expanded-Perlite-Filled Polypropylene Composites in Extrusion-Based Additive Manufacturingcitations
- 2017Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabricationcitations
- 2016Bonding Forces in Fused Filament Fabrication
- 2016Haftungsvorhersage und Haftungsverbesserung im Fused Filament Fabrication (FFF) Prozess
- 2016Special Materials and Technologies for Fused Filament Fabrication
Places of action
Organizations | Location | People |
---|
article
3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts
Abstract
Fused filament fabrication (FFF) combined with debinding and sintering could be an economical process for 3D printing of metal parts. In this study, compounding, filament making and FFF processing of a feedstock material containing 55 vol. % of 17-4PH stainless steel powder and a multicomponent binder system are presented. For the FFF process, processing windows of the most significant parameters, such as range of extrusion temperatures (210 to 260 °C), flow rate multipliers (150 to 200 %), and 3D printing speed multipliers (60 to 100 %) were determined for a constant printing bed temperature of 60 °C.