People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Stevens, Nicholas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2021Corrosion Electrochemistry with a Segmented Array Bipolar Electrodecitations
- 2018Relationship Between the Inductive Response Observed During Electrochemical Impedance Measurements on Aluminium and Local Corrosion Processescitations
- 2017Finite Element Modelling to Investigate the Mechanisms of CRUD Deposition in PWRcitations
- 2012Laser surface modification using Inconel 617 machining swarf as coating materialcitations
- 2011Material-efficient laser cladding for corrosion resistance
- 2010Preliminary evaluation of digital image correlation for in-situ observation of low temperature atmospheric-induced chloride stress corrosion cracking in austenitic stainless steelscitations
- 2007Modelling intergranular stress corrosion cracking in simulated three-dimensional microstructurescitations
- 2006Grain Boundary Control for Improved Intergranular Stress Corrosion Cracking Resistance in Austenitic Stainless Steel: New Approachcitations
- 2006A three-dimensional computational model for intergranular crackingcitations
- 2006Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steelcitations
- 2006Grain boundary control for improved intergranular stress corrosion cracking resistance in austenitic stainless steels: new approach
- 2006Intergranular Stress Corrosion Crack Propagation in Sensitised Austenitic Stainless Steel (Microstructure Modelling and Experimental Observation)
- 2006Meso-mechanical model for intergranular stress corrosion cracking and implications for microstructure engineering
- 2006A two-dimensional mesoscale model for intergranular stress corrosion crack propagationcitations
- 2005The roles of microstructure and mechanics in intergranular stress corrosion cracking
- 2005Computational studies of intergranular stress corrosion crack propagation and the role of bridging ligaments
- 2005Microstructure engineering for improved intergranular stress corrosion cracking resistance of stainless steels
- 2005Microstructure engineering for improved intergranular stress corrosion cracking resistance of stainless steels
- 2005Three dimensional observations and modelling of intergranular stress corrosion cracking in austenitic stainless steel
Places of action
Organizations | Location | People |
---|
document
Modelling intergranular stress corrosion cracking in simulated three-dimensional microstructures
Abstract
Microstructure can have a significant effect on the resistance to intergranular stress corrosion cracking. Certain grain boundaries are susceptible to corrosion while others have high resistance and may form crack bridging ligaments as the crack deviates around them. To investigate the mechanics of crack bridging, 3D computational model has been previously developed. An extension to the model, to include stress corrosion crack growth kinetics is presented in this paper. An analysis of the effects of resistant grain boundary fraction demonstrates that the bridging ligaments can significantly retard short crack propagation rates. Increasing the fraction of resistant boundaries is shown to improve microstructure resistance by reducing the crack propagation rate.