People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Letofsky-Papst, Ilse
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Microstructure and Mechanical Properties of Ti-6Al-4V In Situ Alloyed with 3 wt% Cr by Laser Powder Bed Fusion
- 2024Advancements in metal additive manufacturingcitations
- 2023Oxidation behavior of a cathodic arc evaporated Cr$_{0.69}$Ta$_{0.20}$B$_{0.11}$N coating
- 20232D and 3D STEM Imaging and Spectroscopy: Applications and Perspectives in View of Novel STEM Infrastructure
- 2023Microstructure of a modulated Ti-6Al-4V – Cu alloy fabricated via in situ alloying in laser powder bed fusioncitations
- 2023Oxidation behavior of a cathodic arc evaporated Cr<sub>0.69</sub>Ta<sub>0.20</sub>B<sub>0.11</sub>N coating
- 2022Unique microstructure evolution of a novel Ti-modified Al-Cu alloy processed using laser powder bed fusioncitations
- 2022Crack-free in situ heat-treated high-alloy tool steel processed via laser powder bed fusion: microstructure and mechanical propertiescitations
- 2021Laser powder bed fusion of nano-CaB6 decorated 2024 aluminum alloycitations
- 2021A novel nZVI–bentonite nanocomposite to remove trichloroethene (TCE) from solutioncitations
- 2020The effect of oxygen and carbon on molybdenum in Laser Powder Bed Fusion
- 2020Microstructural evolution of metallurgical coke: Evidence from Raman spectroscopycitations
- 2019Novel highly active carbon supported ternary PdNiBi nanoparticles as anode catalyst for the alkaline direct ethanol fuel cellcitations
- 2016Effect of Alkaline Elements on Coke Structure under Blast Furnace Process Conditions
- 2014Order vs. disorder — a huge increase in ionic conductivity of nanocrystalline LiAlO2 embedded in an amorphous-like matrix of lithium aluminatecitations
- 2012Application of elemental microanalysis to elucidate the role of spherites in the digestive gland of the helicid snail Chilostoma lefeburiana
- 2008δ-phase characterization of superalloy Allvac 718 Plus™
Places of action
Organizations | Location | People |
---|
document
Effect of Alkaline Elements on Coke Structure under Blast Furnace Process Conditions
Abstract
Presence of alkaline elements such as sodium and potassium are highly detrimental for blast furnace operations. Even a trace amount of alkali affects the performance of raw materials considerably. The performance of coke in the process suffers significantly in presence of alkalis by the catalysis of Boudouard reaction during its descent through the shaft and subsequent deterioration of its strength in the lower zone of the furnace, leading to various furnace operating problems. The aim of this work is to investigate the impact of these harmful elements on the coke structure in micro as well as nano level. The Coke Reactivity Index (CRI) and Coke Strength after Reaction (CSR) values of coke are determined for original industrial coke samples as well as the same samples artificially impregnated with alkaline elements in different amounts. The original and CRI-method treated samples (with and without added alkali) are characterized using Scanning Electron Microscopy (SEM), X-Ray Diffractometry (XRD) and Transmission Electron Microscopy (TEM) to look into the lattice and crystalline structure of the constituent graphite of coke. The results demonstrate pronounced disturbance in the graphite lattice caused by alkali. An attempt has been made to explain the mechanism of the deterioration of coke properties under the influence of alkalis in terms of the difference in atomic radii of the constituent elements.