Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Stocker, Hugo

  • Google
  • 4
  • 6
  • 10

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2018Analysis of the Alkali Flow in Ironmaking Reactors by a Thermochemical Approach10citations
  • 2016Determination of the specific surface area of cokes and chars for simulated process conditions of blast furnace and smelting reduction routescitations
  • 2016Influence of slag properties on the alkali-cycle of a blast furnacecitations
  • 2016Experimental Simulation of the Interaction of Slag and Hot Metal with Coke at the Bosh Region of Blast Furnacecitations

Places of action

Chart of shared publication
Pichler, Anton
2 / 2 shared
Hauzenberger, Franz
2 / 3 shared
Thaler, Christoph
4 / 5 shared
Schenk, Johannes
4 / 46 shared
Bhattacharyya, Anrin
2 / 6 shared
Jäger, Michael
1 / 1 shared
Chart of publication period
2018
2016

Co-Authors (by relevance)

  • Pichler, Anton
  • Hauzenberger, Franz
  • Thaler, Christoph
  • Schenk, Johannes
  • Bhattacharyya, Anrin
  • Jäger, Michael
OrganizationsLocationPeople

document

Influence of slag properties on the alkali-cycle of a blast furnace

  • Pichler, Anton
  • Hauzenberger, Franz
  • Thaler, Christoph
  • Schenk, Johannes
  • Stocker, Hugo
Abstract

Alkali metals are generally known as harmful elements for ironmaking processes. Although a high ratio of the input is discharged by the slag during tapping, small amounts of potassium and sodium are evaporated into the furnace from the slag phase. Furthermore, the thermochemical and physical properties lead to an undesirable behavior. The formation of alkali compounds in the blast furnace is determined by the oxygen potential and the temperature. This two parameters change over the blast furnace height, consequently the alkali compounds undergo oxidation and reduction as well as melting, solidification, evaporation and condensing. This leads to the formation of a circulating movement of alkalis. Enrichment in specific zones of the blast furnace and further destructive consequences are direct results of this alkali circle: for instance the formation of scaffolds, an increase in the dust emission, higher coke consumption, higher abrasion of the refractory and significant changes in the process gas flow. Operators of blast furnaces have two methods to reduce the negative effects of alkalis. One way, which is common for most operations, is the use of input materials with a low content of K and Na. The allowable alkali load for modern blast furnaces in western countries is lower than 4 kg/t hot metal[1]. This is mainly achieved by high quality iron ores and coal grades with a low ash-content. Another way is the optimization of process parameters, especially of the blast furnace slag. Lower tapping temperature as well as a low slag basicity can lead to higher output ratios of alkalis by the slag phase. Also higher masses of slag lead to an increased discharged of alkalis by tapping[1]. Equally the amount of circulating alkalis is lowered and the harmful effects are reduced. To determine the specific effects of slag properties on the circulation and enrichment of potassium and sodium, an alkali model for ironmaking reactors was developed. It enables the correlation between slag basicity, temperature and further process parameters with the alkali flow in the reactor and helps to get knowledge about fundamental reactions of K and Na inside the blast furnace. Also a prediction of the alkali distribution and enrichment in connection with the variation of slag properties can be done.

Topics
  • impedance spectroscopy
  • compound
  • phase
  • Oxygen
  • Sodium
  • Potassium
  • iron
  • refractory
  • evaporation
  • solidification