Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Reisinger, Peter

  • Google
  • 1
  • 7
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Evaluation of the Potential for Reduction of CO2 Emissions at the Secondary Metallurgycitations

Places of action

Chart of shared publication
Trummer, Bernd
1 / 1 shared
Arth, Gregor
1 / 1 shared
Viertauer, Andreas
1 / 5 shared
Schenk, Johannes
1 / 46 shared
Gerasev, Andrey
1 / 1 shared
Bundschuh, Philip
1 / 3 shared
Rössler, Roman
1 / 14 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Trummer, Bernd
  • Arth, Gregor
  • Viertauer, Andreas
  • Schenk, Johannes
  • Gerasev, Andrey
  • Bundschuh, Philip
  • Rössler, Roman
OrganizationsLocationPeople

article

Evaluation of the Potential for Reduction of CO2 Emissions at the Secondary Metallurgy

  • Trummer, Bernd
  • Arth, Gregor
  • Viertauer, Andreas
  • Schenk, Johannes
  • Reisinger, Peter
  • Gerasev, Andrey
  • Bundschuh, Philip
  • Rössler, Roman
Abstract

Policies all over the world encourage the high energy efficiency of processes and the reduction of greenhouse gas (GHG) emissions, classified as direct and indirect. Iron and steelmaking is energy intensive industry, which also contributes 30% of the direct global CO2 emissions (2007), triggered through the industrial processes [1]. This article focuses on the verification of the CO2 emissions distribution for the secondary steelmaking.The potential for reduction of these emissions depends on the following key factors of ladle logistics and temperature losses under consideration of the steel contact time, additions during tapping, treatment at the ladle furnace to compensate temperature losses, and ladle preheating.

Topics
  • impedance spectroscopy
  • steel
  • iron