People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kuhn, Luise Theil
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (30/30 displayed)
- 2023Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scatteringcitations
- 2023Chemical Insights into the Formation of Colloidal Iridium Nanoparticles from In Situ X-ray Total Scattering:Influence of Precursors and Cations on the Reaction Pathwaycitations
- 2022Temperature dependence in Bragg edge neutron transmission measurementscitations
- 2022Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticlescitations
- 2021Co oxidation state at LSC-YSZ interface in model solid oxide electrochemical cellcitations
- 2020Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticlescitations
- 2020Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticlescitations
- 2018Solutions for catalysis: A surfactant-free synthesis of precious metal nanoparticle colloids in mono-alcohols for catalysts with enhanced performances
- 2017Coupling between creep and redox behavior in nickel - yttria stabilized zirconia observed in-situ by monochromatic neutron imagingcitations
- 2017Coupling between creep and redox behavior in nickel - yttria stabilized zirconia observed in-situ by monochromatic neutron imagingcitations
- 2016In-Situ Transmission Electron Microscopy on Operating Electrochemical Cells
- 2015Environmental TEM study of the dynamic nanoscaled morphology of NiO/YSZ during reductioncitations
- 2015Need for In Operando Characterization of Electrochemical Interface Features
- 2015Functionally Graded Ceramics Fabricated with Side-by-Side Tape Casting for Use in Magnetic Refrigerationcitations
- 2014NiO/YSZ Reduction for SOFC/SOEC Studied In Situ by Environmental Transmission Electron Microscopycitations
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2013Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCscitations
- 2013Full Ceramic Fuel Cells Based on Strontium Titanate Anodes, An Approach Towards More Robust SOFCscitations
- 2012Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodescitations
- 2012Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodescitations
- 2012Microstructural evolution of nanosized Ce 0.8 Gd 0.2 O 1.9 /Ni infiltrate in a Zr 0.84 Y 0.16 O 1.92 -Sr 0.94 Ti 0.9 Nb 0.1 O 3-δ based SOFC anode under electrochemical evaluation
- 2012Microstructural evolution of nanosized Ce0.8Gd0.2O1.9/Ni infiltrate in a Zr0.84Y0.16O1.92-Sr0.94Ti0.9Nb0.1O3-δ based SOFC anode under electrochemical evaluation
- 2011Nanostructured PLD-grown gadolinia doped ceria: Chemical and structural characterization by transmission electron microscopy techniquescitations
- 2011The effects of thermal annealing on the structure and the electrical transport properties of ultrathin gadolinia-doped ceria films grown by pulsed laser depositioncitations
- 2011Spin reorientation in α-Fe2O3 nanoparticles induced by interparticle exchange interactions in alpha-Fe2O3/NiO nanocompositescitations
- 2010Properties of magnetocaloric La(Fe,Co,Si)13 produced by powder metallurgycitations
- 2010Pulsed laser deposition of gadolinia doped ceria layers at moderate temperature – a seeding approach
- 2008Nanoscale chemical analysis and imaging of solid oxide cellscitations
- 2006Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogelscitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Solutions for catalysis: A surfactant-free synthesis of precious metal nanoparticle colloids in mono-alcohols for catalysts with enhanced performances
Abstract
To optimize precious metal nanocatalysts, an optimal set of nanoparticle (NP) properties (<i>composition, size, loading, etc</i>.)must match specific operating conditions. Synthesis routes offeringindependent control on NP properties are then highly desired: (1) tostudy which combinations of properties are key for an application, (2)to optimize performances, (3) to develop industrial applications if theproduction method is scalable.<br/>Independent control on heterogeneouscatalysts' properties is challenging with the direct formation of NPs onsupports: agglomeration and NP formation in pores lead tounderutilization of the precious metal under catalytic operation.Ourstrategy is to use colloids to optimise independently several physicalproperties of the NPs.Yet in colloidal productions, surfactants aretypically required and need to be removed in energy and time consumingsteps, resulting in loss of catalytic performances due to sintering andpoisoning.<br/><br/>A surfactant-free colloidal synthesis adressing theprevious challenges is presented. Pt NPs are obtained at low temperature(< 80 C) in alkaline mono-alcohols. The method is robust,reproducible, promisingly scalable and flexible (e.g. using microwaves,hot water bath, UV irradiation, flow systems). The mono-alcoholsynthesis shows multiple benefits over alternative routes. It isinterestingly sensitive to parameters screened in other approaches. Theinfluence of solvents,<sup> </sup>time of synthesis and nature of base<sup> </sup>toachieve NP size in the range 1-6 nm and colloidal stability overseveral months, including in aqueous media, are detailed. The NPs arecharacterized by TEM, STEM, FTIR, SAXS, PDF, XAS, and electrochemicalmethods.<br/>The energy, time and cost effective production of NPs in lowboiling point solvents leads to improved catalytic performancescompared to industrial benchmark for chemical production (butanonehydrogenation) and energy conversion (oxygen reduction).