Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bucher, Jan

  • Google
  • 8
  • 33
  • 143

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2023The more the better:on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reaction11citations
  • 2023The more the better: on the formation of single-phase high entropy alloy nanoparticles as catalysts for the oxygen reduction reaction11citations
  • 2023The more the better11citations
  • 2022High entropy alloy nanoparticle formation at low temperaturescitations
  • 2020Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticles37citations
  • 2020Solvent-dependent growth and stabilization mechanisms of surfactant-free colloidal Pt nanoparticles37citations
  • 2018On the Preparation and Testing of Fuel Cell Catalysts Using the Thin Film Rotating Disk Electrode Method36citations
  • 2018Solutions for catalysis: A surfactant-free synthesis of precious metal nanoparticle colloids in mono-alcohols for catalysts with enhanced performancescitations

Places of action

Chart of shared publication
Bøjesen, Espen Drath
1 / 15 shared
Welten, Rahel L.
4 / 4 shared
Rosenkranz, Asger Wulff
2 / 3 shared
Jensen, Kirsten Marie Ørnsbjerg
1 / 6 shared
Du, Jia
3 / 7 shared
Clausen, Christian M.
4 / 6 shared
Rossmeisl, Jan
4 / 51 shared
Stoian, Dragos
4 / 8 shared
Arenz, Matthias
8 / 23 shared
Schlegel, Nicolas
4 / 5 shared
Chen, Qinyi
4 / 4 shared
Mathiesen, Jette K.
3 / 6 shared
Pittkowski, Rebecca K.
2 / 7 shared
Van Beek, Wouter
2 / 9 shared
Nielsen, Tobias M.
4 / 5 shared
Bøjesen, Espen D.
3 / 5 shared
Jensen, Kirsten M. Ø.
3 / 19 shared
Rosenkranz, Asger W.
2 / 2 shared
Pittkowski, Rebecca
2 / 6 shared
Mathiesen, Jette Katja
1 / 4 shared
Beek, Wouter Van
2 / 4 shared
Vosch, Tom
2 / 9 shared
Kunz, Sebastian
3 / 3 shared
Zana, Alessandro
2 / 5 shared
Simonsen, Søren Bredmose
2 / 26 shared
Kacenauskaite, Laura
2 / 2 shared
Oezaslan, Mehtap
3 / 16 shared
Kirkensgaard, Jacob J. K.
2 / 11 shared
Quinson, Jonathan
4 / 22 shared
Kuhn, Luise Theil
3 / 30 shared
Neumann, Sarah
3 / 3 shared
Bredmose Simonsen, Søren
1 / 1 shared
Inaba, Masanori
2 / 3 shared
Chart of publication period
2023
2022
2020
2018

Co-Authors (by relevance)

  • Bøjesen, Espen Drath
  • Welten, Rahel L.
  • Rosenkranz, Asger Wulff
  • Jensen, Kirsten Marie Ørnsbjerg
  • Du, Jia
  • Clausen, Christian M.
  • Rossmeisl, Jan
  • Stoian, Dragos
  • Arenz, Matthias
  • Schlegel, Nicolas
  • Chen, Qinyi
  • Mathiesen, Jette K.
  • Pittkowski, Rebecca K.
  • Van Beek, Wouter
  • Nielsen, Tobias M.
  • Bøjesen, Espen D.
  • Jensen, Kirsten M. Ø.
  • Rosenkranz, Asger W.
  • Pittkowski, Rebecca
  • Mathiesen, Jette Katja
  • Beek, Wouter Van
  • Vosch, Tom
  • Kunz, Sebastian
  • Zana, Alessandro
  • Simonsen, Søren Bredmose
  • Kacenauskaite, Laura
  • Oezaslan, Mehtap
  • Kirkensgaard, Jacob J. K.
  • Quinson, Jonathan
  • Kuhn, Luise Theil
  • Neumann, Sarah
  • Bredmose Simonsen, Søren
  • Inaba, Masanori
OrganizationsLocationPeople

conferencepaper

Solutions for catalysis: A surfactant-free synthesis of precious metal nanoparticle colloids in mono-alcohols for catalysts with enhanced performances

  • Inaba, Masanori
  • Kunz, Sebastian
  • Bucher, Jan
  • Simonsen, Søren Bredmose
  • Oezaslan, Mehtap
  • Arenz, Matthias
  • Quinson, Jonathan
  • Kuhn, Luise Theil
  • Neumann, Sarah
Abstract

To optimize precious metal nanocatalysts, an optimal set of nanoparticle (NP) properties (<i>composition, size, loading, etc</i>.)must match specific operating conditions. Synthesis routes offeringindependent control on NP properties are then highly desired: (1) tostudy which combinations of properties are key for an application, (2)to optimize performances, (3) to develop industrial applications if theproduction method is scalable.<br/>Independent control on heterogeneouscatalysts' properties is challenging with the direct formation of NPs onsupports: agglomeration and NP formation in pores lead tounderutilization of the precious metal under catalytic operation.Ourstrategy is to use colloids to optimise independently several physicalproperties of the NPs.Yet in colloidal productions, surfactants aretypically required and need to be removed in energy and time consumingsteps, resulting in loss of catalytic performances due to sintering andpoisoning.<br/><br/>A surfactant-free colloidal synthesis adressing theprevious challenges is presented. Pt NPs are obtained at low temperature(&lt; 80 C) in alkaline mono-alcohols. The method is robust,reproducible, promisingly scalable and flexible (e.g. using microwaves,hot water bath, UV irradiation, flow systems). The mono-alcoholsynthesis shows multiple benefits over alternative routes. It isinterestingly sensitive to parameters screened in other approaches. Theinfluence of solvents,<sup> </sup>time of synthesis and nature of base<sup> </sup>toachieve NP size in the range 1-6 nm and colloidal stability overseveral months, including in aqueous media, are detailed. The NPs arecharacterized by TEM, STEM, FTIR, SAXS, PDF, XAS, and electrochemicalmethods.<br/>The energy, time and cost effective production of NPs in lowboiling point solvents leads to improved catalytic performancescompared to industrial benchmark for chemical production (butanonehydrogenation) and energy conversion (oxygen reduction).

Topics
  • nanoparticle
  • impedance spectroscopy
  • pore
  • Oxygen
  • transmission electron microscopy
  • alcohol
  • x-ray absorption spectroscopy
  • sintering
  • small angle x-ray scattering
  • surfactant