Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Psoma, Sotiria

  • Google
  • 2
  • 6
  • 16

The Open University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017A Practical application of energy harvesting based on piezoelectric technology for charging portable electronic devices16citations
  • 2005SU-8 micro-biosensor based on Mach-Zehnder interferometercitations

Places of action

Chart of shared publication
Tzanetis, P.
1 / 1 shared
Tourlidakis, A.
1 / 1 shared
Kusco, M.
1 / 1 shared
Muller, R.
1 / 12 shared
Schneider, A.
1 / 10 shared
Esinesco, D.
1 / 1 shared
Chart of publication period
2017
2005

Co-Authors (by relevance)

  • Tzanetis, P.
  • Tourlidakis, A.
  • Kusco, M.
  • Muller, R.
  • Schneider, A.
  • Esinesco, D.
OrganizationsLocationPeople

article

SU-8 micro-biosensor based on Mach-Zehnder interferometer

  • Kusco, M.
  • Psoma, Sotiria
  • Muller, R.
  • Schneider, A.
  • Esinesco, D.
Abstract

In this paper design, simulations and preliminary experimental results for an optical biosensor, using a Mach-Zehnder interferometer as basic configuration, are presented. This type of sensor offered a lot of advantages such as compactness, real time analysis, low cost and high sensitivity and the possibility of integration of electronic detection components on the same chip. The integrated optical structure is sensitive to refractive index change induced due to the interaction of the evanescent field with an immobilised biological sample placed on one of the two arms of the interferometer (the sensitive one). A window is open in the upper cladding of the waveguide. Changing the bio specimen produces a variation of the refractive index of the cladding layer, which can be observed through the phase shift difference between the light of the two interferometer arms.<br></br><br></br>SU-8 polymer was tested as the core of the optical waveguides, an epoxy-based negative photoresist material, which presented very good transmission properties providing low propagation losses and SiO<sub>2</sub> and PMMA positive photoresist were utilised as lower, respective upper claddings. The Optiwave FDTD software was used for the simulation of the propagation of the electromagnetic field at λ=630 nm and for the optimisation of the Mach Zehnder interferometer parameters.

Topics
  • impedance spectroscopy
  • polymer
  • phase
  • simulation