People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Miranda, R. M.
Laboratory of Microstructure Studies and Mechanics of Materials
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (58/58 displayed)
- 2022In-situ hot forging direct energy deposition-arc of CuAl8 alloycitations
- 2022In-situ hot forging directed energy deposition-arc of CuAl8 alloycitations
- 2021Analysis of copper sheets welded by fiber laser with beam oscillationcitations
- 2021Wire and Arc Additive Manufacturing of High-Strength Low-Alloy Steelcitations
- 2021Benchmarking of Nondestructive Testing for Additive Manufacturingcitations
- 2020Hot forging wire and arc additive manufacturing (HF-WAAM)citations
- 2019Aluminium to Carbon Fibre Reinforced Polymer tubes joints produced by magnetic pulse weldingcitations
- 2019Non-destructive microstructural analysis by electrical conductivitycitations
- 2019Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical propertiescitations
- 2019Microstructure and mechanical properties of gas tungsten arc welded Cu-Al-Mn shape memory alloy rodscitations
- 2019Microstructure and mechanical properties of gas tungsten arc welded Cu-Al-Mn shape memory alloy rodscitations
- 2019Non-destructive microstructural analysis by electrical conductivity: Comparison with hardness measurements in different materialscitations
- 2019Large-dimension metal parts produced through laser powder bed fusion
- 2018Laser welding of Cu-Al-Be shape memory alloys: Microstructure and mechanical propertiescitations
- 2018Laser welding of Cu-Al-Be shape memory alloys: Microstructure and mechanical propertiescitations
- 2018Magnetic pulse welding machine optimisation for aluminium tubular joints productioncitations
- 2017Production of Al/NiTi composites by friction stir welding assisted by electrical currentcitations
- 2017Production of Al/NiTi composites by friction stir welding assisted by electrical currentcitations
- 2017Advances in non destructive testing and evaluationm (NDT&E)
- 2017Dissimilar laser welding of superelastic NiTi and CuAlMn shape memory alloyscitations
- 2017Welding and Joining of NiTi Shape Memory Alloys: A Reviewcitations
- 2016Effect of laser welding parameters on the austenite and martensite phase fractions of NiTicitations
- 2016Effect of laser welding parameters on the austenite and martensite phase fractions of NiTicitations
- 2016On the Mechanisms for Martensite Formation in YAG Laser Welded Austenitic NiTicitations
- 2016Tungsten inert gas (TIG) welding of Ni-rich NiTi platescitations
- 2016On the mechanisms for martensite formation in YAG laser welded austenitic NiTicitations
- 2016Improvement of damping properties in laser processed superelastic Cu-Al-Mn shape memory alloyscitations
- 2016Laser welded superelastic Cu-Al-Mn shape memory alloy wirescitations
- 2016Laser joining of NiTi to Ti6Al4V using a Niobium interlayercitations
- 2016Residual stress analysis in laser welded NiTi sheets using synchrotron X-ray diffractioncitations
- 2016Residual stress analysis in laser welded NiTi sheets using synchrotron X-ray diffractioncitations
- 2016Friction Stir Welding of Shipbuilding Steel with Primercitations
- 2015Surface effects in pulsed laser beam irradiated shape memory alloys
- 2015Fiber laser welding of NiTi to Ti-6Al-4Vcitations
- 2015Shape memory effect of laser welded NiTi platescitations
- 2015Shape memory effect of laser welded NiTi platescitations
- 2014Wear behaviour of steel coatings produced by friction surfacingcitations
- 2014Friction surfacing - A reviewcitations
- 2013In situ structural characterization of laser welded NiTi shape memory alloyscitations
- 2013In situ structural characterization of laser welded NiTi shape memory alloyscitations
- 2013Deposition of AA6082-T6 over AA2024-T3 by friction surfacing - Mechanical and wear characterizationcitations
- 2013Laser Welded NiTi. Correlation between mechanical cycling behavior and microstructure
- 2013Influence of process parameters in the friction surfacing of AA 6082-T6 over AA 2024-T3citations
- 2013Reinforcement strategies for producing functionally graded materials by friction stir processing in aluminium alloyscitations
- 2013Bonding NiTi to glass with femtosecond laser pulsescitations
- 2013Cutting NiTi with Femtosecond Lasercitations
- 2013Analyzing mechanical properties and nondestructive characteristics of brazed joints of NiTi shape memory alloys to carbon steel rodscitations
- 2013Femtosecond Laser Irradiation of NiTi for Micro and Nano Biomedical Applications
- 2012New method employing the electrical impedance for monitoring mechanical damage evolution in glass-reinforced: Applications to riveted joints
- 2012Similar Laser Welding of Shape Memory Alloys: microstructural and mechanical characterization
- 2012Structural characterization by x-ray diffraction of laser welded shape memory alloys
- 2012Effects of processing parameters on mechanical cycling of laser welded SMAs
- 2012NDT characterization of brazed NiTi to carbon steel rods
- 2011Chapter 7 - Shape memory alloys: existing and emerging applications
- 2011Modification of electrical conductivity by friction stir processing of aluminum alloyscitations
- 2011Laser beam interaction with Ni-Mn-Ga ferromagnetic shape memory alloyscitations
- 2011Mechanical behaviour of Nd:YAG laser welded superelastic NiTicitations
- 2011Microstructural mapping of friction stir welded AA 7075-T6 and AlMgSc alloys using electrical conductivitycitations
Places of action
Organizations | Location | People |
---|
document
Femtosecond Laser Irradiation of NiTi for Micro and Nano Biomedical Applications
Abstract
Laser beam technology has been largely investigated for welding and joining for micro and more recently nano components. When the scale goes down to few micron or even nanometers melting has to be controlled in the range of a few nanometers The ultra fast pulsed lasers and femtosecond (fs) lasers are innovative tools in nanoscopic processing [1] for microelectronics, optoelectronics and medical industry. Femtosecond laser irradiation can result in an ultra fast and non thermal melting of materials with promising results for joining dissimilar materials in the micro or nano scale ranges [2]. Femtosecond laser can also synthesis nanoparticles by ablation. Therefore, it is possible to synthesis and joining nanoparticles at the same time: ablate the material or melt the outer surface depositing this on the substrate surface assisted by the beam jet pressure. Shape memory alloys as NiTi have remarkable properties as biocompatibility, good strength and ductility and research is required to fully exploit their potential in innovative applications [3]. The aim of the present study is to use femtosecond lasers to process NiTi is both machining, joining and deposition, assessing the effects of laser irradiation of this material. Three applications are reported. Deposition assisted by fs laser of NiTi onto a glass substrate was studied identifying the track geometry, the characteristics of the deposited particles both morphological and its chemical composition. A femtosecond laser from Coherent, Elite Duo USP 1K was set to impinge on the glass lamellae side was used. It was found that glass surfaces can be micro engineered controlling the femtosecond laser process for depositing NiTi particles in a pattern controlled by the laser beam intensity, proving NiTi can be bonded to glass. The laser beam produces micrometric droplets of molten metallic NiTi projected onto the surface by a shockwave produced in two directions, along and perpendicular to the laser traveling direction. A second application was machining of NiTi aiming to preserve both the chemical and the mechanical properties. Fentosecond laser was tested to analyze their potential for machining NiTi as it allows non thermal processing of materials by ablation. Since the fluence of a femtosecond laser is much higher than in pulsed Nd- YAG and it was shown that the surface preserves its properties. Finally, laser brazing of equiatomic NiTi and Ti6Al4V was performed with silver based filler material in nanopaste and membrane shapes. Insipient fusion of the silver brazing alloy was observed that is insufficient to promote the joining. The microstructural analysis of the fracture surface revealed insipient melting of the filler, with insufficient adherence to the substrates with no surface diffusion promoting joining.The results point out that a proper strategy for brazing would require a higher melting and applied compressive force.