Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bingel, Joachim

  • Google
  • 2
  • 11
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2017Learning what to share between loosely related taskscitations
  • 2013KorAP: the new corpus analysis platform at IDS Mannheim.citations

Places of action

Chart of shared publication
Ruder, Sebastian
1 / 1 shared
Augenstein, Isabelle
1 / 3 shared
Søgaard, Anders
1 / 1 shared
Diewald, Nils
1 / 1 shared
Banski, Piotr
1 / 1 shared
Pezik, Piotr
1 / 1 shared
Kupietz, Marc
1 / 1 shared
Hanl, Michael
1 / 1 shared
Frick, Elena
1 / 2 shared
Witt, Andreas
1 / 1 shared
Schnober, Carsten
1 / 1 shared
Chart of publication period
2017
2013

Co-Authors (by relevance)

  • Ruder, Sebastian
  • Augenstein, Isabelle
  • Søgaard, Anders
  • Diewald, Nils
  • Banski, Piotr
  • Pezik, Piotr
  • Kupietz, Marc
  • Hanl, Michael
  • Frick, Elena
  • Witt, Andreas
  • Schnober, Carsten
OrganizationsLocationPeople

article

Learning what to share between loosely related tasks

  • Ruder, Sebastian
  • Augenstein, Isabelle
  • Søgaard, Anders
  • Bingel, Joachim
Abstract

Multi-task learning is motivated by the observation that humans bring to bear what they know about related problems when solving new ones. Similarly, deep neural networks can profit from related tasks by sharing parameters with other networks. However, humans do not consciously decide to transfer knowledge between tasks. In Natural Language Processing (NLP), it is hard to predict if sharing will lead to improvements, particularly if tasks are only loosely related. To overcome this, we introduce Sluice Networks, a general framework for multi-task learning where trainable parameters control the amount of sharing. Our framework generalizes previous proposals in enabling sharing of all combinations of subspaces, layers, and skip connections. We perform experiments on three task pairs, and across seven different domains, using data from OntoNotes 5.0, and achieve up to 15% average error reductions over common approaches to multi-task learning. We show that a) label entropy is predictive of gains in sluice networks, confirming findings for hard parameter sharing and b) while sluice networks easily fit noise, they are robust across domains in practice.

Topics
  • impedance spectroscopy
  • experiment