People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Peacock, Anna C.
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (47/47 displayed)
- 2024Semiconductor core fibres: a scalable platform for nonlinear photonicscitations
- 2022Recent progress in fiber-based supercontinuum sources
- 2021Recent advances in supercontinuum generation in specialty optical fibers [Invited]citations
- 2020Laser-driven phase segregation and tailoring of compositionally graded microstructures in Si-Ge nanoscale thin filmscitations
- 2020Silicon erasable waveguides and directional couplers by germanium ion implantation for configurable photonic circuitscitations
- 2020Laser processed semiconductors for integrated photonic devices
- 2020Laser-written silicon-germanium alloy microstructures with tunable compositionally graded profiles
- 2019Laser processing of amorphous semiconductors on planar substrates for photonic and optoelectronic applications
- 2019Net optical parametric gain in a submicron silicon core fiber pumped in the telecom bandcitations
- 2018Wavelength conversion and supercontinuum generation in silicon optical fiberscitations
- 2018Germanium implanted photonic devices for post-fabrication trimming and programmable circuitscitations
- 2018Ion implantation in silicon for trimming the operating wavelength of ring resonatorscitations
- 2018Optical-resonance-enhanced nonlinearities in a MoS2-coated single-mode fibercitations
- 2017Laser annealing of low temperature deposited silicon waveguidescitations
- 2017Phase trimming of Mach-Zehnder Interferometers by laser annealing of germanium implanted waveguidescitations
- 2017Post-fabrication phase trimming of Mach-Zehnder Interferometers by laser annealing of germanium implanted waveguidescitations
- 2017Tapered silicon core fibers with nano-spikes for optical coupling via spliced silica fiberscitations
- 2017Fibre-coupled photonic metadevices
- 2016Laser recrystallization and inscription of compositional microstructures in crystalline SiGe-core fibrescitations
- 2015Templated growth of II-VI semiconductor optical fiber devices and steps towards infrared fiber lasers
- 2015A silicon/lithium niobate hybrid photonic material platform produced by laser processing
- 2014Silicon-based photonic integration beyond the telecommunication wavelength rangecitations
- 2014Long-wavelength silicon photonic integrated circuits
- 2014Locally erasable couplers for optical device testing in silicon on insulatorcitations
- 2014Annealing of amorphous silicon using c.w. visible lasers
- 2014Tunable anisotropic strain in laser crystallized silicon core optical fibers
- 2014Extreme electronic bandgap modification in laser-crystallized silicon optical fibrescitations
- 2014Mid-IR heterogeneous silicon photonicscitations
- 2013Laser crystallisation of semiconductor core optical fibres
- 2013Laser crystallisation of semiconductor core optical fibres
- 2012Conformal coating by high pressure chemical deposition for patterned microwires of II-VI semiconductorscitations
- 2012Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibrescitations
- 2012Laser annealing of amorphous silicon core optical fiberscitations
- 2012Mid Infrared Transmistion Properties of ZnSe Microstructured Optical Fiberscitations
- 2011High index contrast semiconductor ARROW and hybrid ARROW fiberscitations
- 2011Selective semiconductor filling of microstructured optical fiberscitations
- 2011Zinc selenide optical fiberscitations
- 2011ARROW guiding silicon photonic crystal fibres
- 2010Integration of semiconductors molecules and metals into microstructured optical fibers
- 2008Endoscopic fiber: microfluidic chemical deposition moves optical fiber to the nanoscale
- 2008Loss measurements of microstructured optical fibres with metal-nanoparticle inclusionscitations
- 2008Silver nanoparticle impregnated polycarbonate substrates for surface enhanced Raman spectroscopycitations
- 2007Deposition of electronic and plasmonic materials inside microstructured optical fibres
- 2007Highly efficient SERS inside microstructured optical fibres via optical mode engineering
- 2006Surface enhanced Raman scattering using metal modified microstructured optical fiber substratescitations
- 2006Surface enhanced Raman scattering using metal modified microstructured optical fibre substrates
- 2006Surface enhanced Raman scattering using metal modified microstructured optical fibre substratescitations
Places of action
Organizations | Location | People |
---|
document
Annealing of amorphous silicon using c.w. visible lasers
Abstract
The strong absorption of c.w. laser radiation in the green/blue spectral region has been used to thermally anneal and locally crystalize small volumes of amorphous silicon (a-Si) which has been thermally insulated from the environment. We will present experimental results for two distinct cases where this method has been used for producing high quality c-Si and secondly for allowing additional optoelectronic functionality to be built into the material. <br/>More specifically we will discuss laser annealing results obtained in cylindrical and planar geometries; in a-Si core optical fibers and in a-Si thin films deposited on fused silica slabs and on the polar faces of LiNbO<sub>3</sub> single crystals. In both geometries crystallization of a-Si has been achieved, in some cases producing crystallites with enormous aspect ratios. In the case of a-Si core fibers we have not only achieved a significant improvement of the optical quality of the silicon material, but also observed some tuneability of its optoelectronics properties. LiNbO<sub>3</sub> on the other hand is one of the cornerstone platforms of nonlinear/integrated optics. By transferring the materials processing advances made in our silicon fibers to LiNbO<sub>3</sub>, we can envisage a platform that exploits the superior optical and electronic properties of both materials for the development of high performance optoelectronic devices. Our preliminary results are very encouraging and we believe that this combination promises many exciting future applications.