People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kovács, András
Forschungszentrum Jülich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Current-driven writing process in antiferromagnetic Mn2Au for memory applicationscitations
- 2023Large Interfacial Rashba Interaction Generating Strong Spin–Orbit Torques in Atomically Thin Metallic Heterostructurescitations
- 2023Large interfacial Rashba interaction and resultant dominating field- like torque in atomically thin metallic heterostructurescitations
- 2023Role of heterophase interfaces on local coercivity mechanisms in the magnetic Al0.3CoFeNi complex concentrated alloycitations
- 2022Microstructure and Properties after Friction Stir Processing of Twin-Roll Cast Al–Mn–Cu–Be Alloycitations
- 2021Readout of an antiferromagnetic spintronics system by strong exchange coupling of Mn2Au and Permalloycitations
- 2020Unconventional magnetization textures and domain-wall pinning in Sm–Co magnetscitations
- 2020Ti Alloyed α-Ga2O3 : route towards Wide Band Gap Engineeringcitations
- 2020Ti Alloyed α-Ga2O3: Route towards Wide Band Gap Engineeringcitations
- 2020Ti Alloyed α-Ga2O3: Route towards Wide Band Gap Engineering.
- 2020Ti Alloyed α -Ga 2 O 3: Route towards Wide Band Gap Engineering
- 2019Electron holographycitations
- 2017Control of morphology and formation of highly geometrically confined magnetic skyrmionscitations
- 2015Electrostatic doping as a source for robust ferromagnetism at the interface between antiferromagnetic cobalt oxidescitations
- 2011Formation process and superparamagnetic properties of (Mn,Ga)As nanocrystals in GaAs fabricated by annealing of (Ga,Mn)As layers with low Mn contentcitations
- 2011Amorphous Fe-B alloys in B-Fe-Ag multilayers studied by magnetization and Mössbauer measurementscitations
- 2011Voids and Mn-rich inclusions in a (Ga,Mn)As ferromagnetic semiconductor investigated by transmission electron microscopycitations
- 2010Mapping boron in silicon solar cells using electron energy-loss spectroscopy
- 2010Mapping boron in silicon solar cells using electron energy-loss spectroscopy
Places of action
Organizations | Location | People |
---|
document
Mapping boron in silicon solar cells using electron energy-loss spectroscopy
Abstract
Amorphous silicon solar cells typically consist of stacked layers deposited on plastic or metallic substrates making sample preparation for transmission electron microscopy (TEM) difficult. The amorphous silicon layer - the active part of the solar cell - is sandwiched between 10-nm-thick n- and p-doped layers. The typical boron concentration in the p-doped layer is ~10^21cm -3 and should not exceed 1017cm-3 in the neighbouring intrinsic (i) layer [1], where it acts as a charge recombination centre and decreases the internal electric field [2]. The detection of low boron concentrations with high spatial resolution using TEM is highly challenging [3]. Recently, scanning TEM (STEM) combined with electron energy-loss spectroscopy (EELS) and spherical aberration-correction has allowed the direct detection of dopant concentration of 10^20cm-3 in 65-nm-wide silicon devices [4]. Here, we prepare TEM samples by focused ion beam milling in order to map the boron distribution across a 200-nm-thick n-p amorphous silicon junction using energy-filtered TEM and EELS spectrum acquisition. EELS line scans are used to detect boron concentrations as low as 10^20cm-3. We also use monochromated EELS to measure changes in the energies of plasmon peaks in the low loss region [5]. We use these approaches to characterize both a thick n-p junction and the 10-nm-thick p-doped layer of a working solar cell.[1] U. Kroll, C. Bucher, S. Benagli, I. Schönbächler, J. Meier, A. Shah, J. Ballutaud, A. Howling, Ch. Hollenstein, A. Büchel, M. Poppeller, Thin Solid Films 451 (2004) 525[2] B. Rech, H. Wagner, Applied Physics A 69 (1999) 155[3] C.B. Boothroyd, K. Sato, K. Yamada, Proceedings of the XIIth international congress for electron microscopy, ed LD Peachey and DB Williams (San Francisco Press, San Francisco, 1990) 80[4] K. Asayama, N. Hashikawa, K. Kajiwara, T. Yaguchi, M. Konno, H. Mori, Applied Physics Express 1 (2008) 074001[5] V. Olevano, L. Reining, Physical Review Letters 86 (2001) 5962