Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Krasheninnikov, M. E.

  • Google
  • 1
  • 15
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015ЭКСПЕРИМЕНТАЛЬНОЕ ОБОСНОВАНИЕ СОЗДАНИЯ ГИБРИДНОЙ МАТРИЦЫ И ТКАНЕИНЖЕНЕРНОЙ КОНСТРУКЦИИ НА ОСНОВЕ СЕТКИ ИЗ ПОЛИЛАКТОГЛИКОЛИДА И РЕКОНСТРУИРОВАННОГО КОЛЛАГЕНА С ЦЕЛЬЮ ПОСЛЕДУЮЩЕЙ ЗАМЕСТИТЕЛЬНОЙ УРЕТРОПЛАСТИКИcitations

Places of action

Chart of shared publication
Vorobeva, E. A.
1 / 1 shared
Lyundup, A. V.
1 / 1 shared
Iritsyan, M. M.
1 / 1 shared
Aboyants, R. K.
1 / 1 shared
Istranova, E. V.
1 / 2 shared
Kurkov, A. V.
1 / 1 shared
Safronova, E. I.
1 / 1 shared
Istranov, L. P.
1 / 1 shared
Marisov, L. V.
1 / 1 shared
Kantimerov, D. F.
1 / 1 shared
Butnaru, D. V.
1 / 1 shared
Vinarov, A. Z.
1 / 1 shared
Shekhter, A. B.
1 / 1 shared
Alyaev, Y. G.
1 / 1 shared
Glybochko, P. V.
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Vorobeva, E. A.
  • Lyundup, A. V.
  • Iritsyan, M. M.
  • Aboyants, R. K.
  • Istranova, E. V.
  • Kurkov, A. V.
  • Safronova, E. I.
  • Istranov, L. P.
  • Marisov, L. V.
  • Kantimerov, D. F.
  • Butnaru, D. V.
  • Vinarov, A. Z.
  • Shekhter, A. B.
  • Alyaev, Y. G.
  • Glybochko, P. V.
OrganizationsLocationPeople

article

ЭКСПЕРИМЕНТАЛЬНОЕ ОБОСНОВАНИЕ СОЗДАНИЯ ГИБРИДНОЙ МАТРИЦЫ И ТКАНЕИНЖЕНЕРНОЙ КОНСТРУКЦИИ НА ОСНОВЕ СЕТКИ ИЗ ПОЛИЛАКТОГЛИКОЛИДА И РЕКОНСТРУИРОВАННОГО КОЛЛАГЕНА С ЦЕЛЬЮ ПОСЛЕДУЮЩЕЙ ЗАМЕСТИТЕЛЬНОЙ УРЕТРОПЛАСТИКИ

  • Vorobeva, E. A.
  • Lyundup, A. V.
  • Iritsyan, M. M.
  • Aboyants, R. K.
  • Istranova, E. V.
  • Kurkov, A. V.
  • Safronova, E. I.
  • Istranov, L. P.
  • Marisov, L. V.
  • Kantimerov, D. F.
  • Krasheninnikov, M. E.
  • Butnaru, D. V.
  • Vinarov, A. Z.
  • Shekhter, A. B.
  • Alyaev, Y. G.
  • Glybochko, P. V.
Abstract

<p>Urethral strictures are a pressing issue in modern medicine. Substitution urethroplasty is considered one of the most effective treatment methods. However, despite the surgery showing good results, many problems remain unresolved, one being substitute material deficiency in extensive or recurrent strictures, as well as in cases requiring multistage surgeries, including those used to treat hypospadias. Graft removal also leaves the donor area prone to diseases and increases the length of surgery leading to a higher risk of intra- and postoperative complications. Tissue engineering (namely tissue-engineered products comprised of scaffolds and cells) may be a useful tool in dealing with these issues. The authors assessed the characteristics of a novel hybrid scaffold created from "reconstructed" collagen and a poly(lactic-co-glycolic acid) mesh. The resulting composite product showed good mechanical properties and functional performance. The hybrid scaffold was non-cytotoxic and provided an adequate base for cell adhesion and proliferation. Biodegradation resulted in the scaffold being replaced by urothelium and urethral mucosa. The newly formed tissues possessed adequate structural and functional properties. Only one rabbit out of 12 developed urethral stricture at the site of scaffold implantation. The above-mentioned facts suggest that the novel hybrid scaffold is a promising tissue-engineered product with potential implication in substitution urethroplasty.</p>

Topics
  • impedance spectroscopy
  • composite