Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cebeci, Hulya Geyik

  • Google
  • 1
  • 3
  • 0

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Thermal and Electrical Transport in Hybrid Woven Composites Reinforced with Aligned Carbon Nanotubescitations

Places of action

Chart of shared publication
Yamamoto, Namiko
1 / 3 shared
De Villoria, Roberto Guzman
1 / 10 shared
Wardle, Brian L.
1 / 28 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Yamamoto, Namiko
  • De Villoria, Roberto Guzman
  • Wardle, Brian L.
OrganizationsLocationPeople

article

Thermal and Electrical Transport in Hybrid Woven Composites Reinforced with Aligned Carbon Nanotubes

  • Yamamoto, Namiko
  • De Villoria, Roberto Guzman
  • Wardle, Brian L.
  • Cebeci, Hulya Geyik
Abstract

Carbon nanotubes (CNTs) are a potential new component to be incorporated into existing aerospace structural composites for multifunctional (mechanical, electrical, thermal, etc.) property enhancement. Although CNT properties are extraordinary when measured individually, they tend to degrade by a large factor when integrated in system (often in polymer matrices). Mechanisms and effectiveness of nano-scale CNT implementation into macro-scale structural composites are not well understood. Non-mechanical aspects of these composites are the focus of this work. As a CNT hybridized fiber polymer composite, fuzzy fiber reinforced plastic (FFRP) is developed using a scalable fabrication method that achieves uniform CNT distributions for thermal and electrical conductive networks without requiring intensive mixing which can damage CNTs. At small CNT volume fractions (~0.5- 8% Vf), characterization shows significant enhancement in electrical conduction (x106-108) but limited enhancement in thermal conduction (x1.9). In addition, aligned-CNT polymer nanocomposites (A-CNT-PNCs) are being characterized as a representative volume element (RVE) of the FFRP. Experimentally obtained data on consistent A-CNT-PNC samples sets provide engineering knowledge and to achieve effective utilization of CNTs' multifunctional properties. Theoretical studies, both analytical and numerical, have been recently developed, suggesting interface effects may be a key to explaining the above limitations, including electron tunneling/hopping or phonon scattering at CNT-CNT and CNT-polymer interfaces. Multiple test techniques and property extraction methods for A-CNT-PNCs are developed and/or employed for cross-comparison. Applications of nano-engineered composites enhanced with CNTs can include lightning protection layers, electromagnetic interference shields, thermal management layers, and thermoelectrical sensor layers for airplane structures. ; Airbus Industrie ; Massachusetts Institute of Technology (Richard and Linda Hardy Graduate Fellowship) ; Boeing Company ; Empresa Brasileira de Aeronáutica ; Lockheed Martin ; Spirit AeroSystems (Firm) ; Textron, inc. ; Composite Systems Technology (Firm) ; Toho Tenax Co., Ltd. ; Massachusetts Institute of Technology (Nano-Engineered Composite aerospace STructures (NECST) Consortium)

Topics
  • nanocomposite
  • impedance spectroscopy
  • polymer
  • Carbon
  • nanotube
  • extraction
  • woven
  • aligned
  • structural composite