People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
De Villoria, Roberto Guzman
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2012Nanocomposite Flexible Pressure Sensor for Biomedical Applicationscitations
- 2012Flexible Pressure Sensors: Modeling and Experimental Characterizationcitations
- 2012Aligned Carbon Nanotube Reinforcement of Aerospace Carbon Fiber Composites: Substructural Strength Evaluation for Aerostructure Applications
- 2011Multi-physics damage sensing in nano-engineered structural compositescitations
- 2011Continuous Growth of Vertically Aligned Carbon Nanotubes
- 2011Continuous Growth of Vertically Aligned Carbon Nanotubes Forests
- 2011Carbon Nanotube (CNT) Enhancements for Aerosurface State Awareness
- 2010Tomographic Electrical Resistance-based Damage Sensing in Nano-Engineered Composite Structures
- 2010Thermal and Electrical Transport in Hybrid Woven Composites Reinforced with Aligned Carbon Nanotubes
- 2009Load Transfer Analysis in Short Carbon Fibers with Radially-Aligned Carbon Nanotubes Embedded in a Polymer Matrix
Places of action
Organizations | Location | People |
---|
article
Continuous Growth of Vertically Aligned Carbon Nanotubes
Abstract
Vertically aligned carbon nanotubes (VACNTs), sometimes called forests or carpets, are a promising material due to their unique physical and scale-dependent physical properties [1-3]. Continuous production of VACNTs is required for large-scale applications in electronic devices, fuel cells and structural composite materials [4] among others. Chemical vapour deposition (CVD) is the only available technique to produce large areas of VACNTs, and most of the studies done for this technique are done for stationary growth in batch CVD processing [5-7]. Recently, it has been demonstrated that there is no significant differences between the VACNTs grown at different velocities up to 1.1 mm/s in terms of quality, morphology and length using a CVD process in a custom cold wall continuous-feed reactor [8]. Here, a controlled process to synthesize aligned CNTs in a continuous manner is discussed. Uniform growth is achieved using different substrates including alumina fibers in bundle form and silicon wafers. ; Airbus Industrie ; Boeing Company ; Empresa Brasileira de Aeronáutica ; Lockheed Martin ; Saab (Firm) ; Spirit AeroSystems (Firm) ; Textron, Inc. ; Composite Systems Technology (Firm) ; Hexcel (Firm) ; NECST Consortium