People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
David, Eric
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Effect of environmental temperature and semi‐crystalline order on the toughening of polyamide 1010 by <scp>2D</scp> nanomaterials
- 2024Balancing thermal conductivity, dielectric, and tribological properties in polyamide 1010 with 2D nanomaterialscitations
- 2019Deployment of 4P, the high-speed phenotyping data processing platform on the France Grilles infrastructure.
- 2019Deployment of 4P, the high-speed phenotyping data processing platform on the France Grilles infrastructure.
- 2019Dielectric properties of epoxy/POSS and PE/POSS systems
- 2018Electrical Breakdown Properties of Clay-Based LDPE Blends and Nanocompositescitations
- 2016Dielectric properties of epoxy/montmorillonite nanocomposites and nanostructured epoxy/SiO2/Montmorillonite Microcompositescitations
- 2016Functional Nanomaterials For Electric Power Industry
Places of action
Organizations | Location | People |
---|
booksection
Dielectric properties of epoxy/POSS and PE/POSS systems
Abstract
In many applications in electronic power, and high-voltage engineering, there is a need to improve the electrical properties of existing insulation systems and/or to develop novel insulation materials with properties more suitable with the changing requirements, particularly in the electrotechnical area. During the last few decades, a considerable attention has been given to the possible use of polymeric nanocomposites systems, usually a nonconductive polymer containing nanometric inorganic fillers, as a replacement to the neat polymers offering better electrical and thermal properties. There is almost, nowadays, a consensus among the scientific community that such property enhancements can only be achieved when the nano-fillers present a reasonably good size dispersion and spatial distribution within the host polymer. However, due to nano-fillers’ strong tendency to agglomerate and their generally poor compatibility with commonly used polymers, to reach optimal dispersions has been found challenging in most cases. In order to improve the polymer/particles’ compatibility and therefore to avoid agglomeration and poor-dispersion problems, polyhedral oligomeric silsesquioxanes (POSS) appear to be a filler of choice since they are by nature nanoscaled molecules bearing built-in functionalities which can be selected according to the chemical nature of the host polymer. This chapter summarizes the investigations that were reported so far on the electrical properties of epoxy/POSS, PE/POSS, and PP/POSS systems. The general conclusion is that in the case of polyolefin/POSS composites, nanoscale dispersion was found to be hard to reach despite the selection alkyl-type POSS and the dielectric properties were not found to be strongly improved while in the case of epoxy/POSS systems, the selection of appropriate POSS compounds and a carefully chosen resin/additive/hardener ratio allow nanoscale dispersion accompanied with noticeable improvements of the dielectric properties.