People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ullah, Zahur
Durham University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Effects of ply hybridisation on delamination in hybrid laminates at CorTen steel/M79LT-UD600 composite interfaces
- 2024Experimental and numerical investigation of fracture characteristics in hybrid steel/composite and monolithic angle-ply laminates
- 2024Finite fracture mechanics fracture criterion for free edge delamination
- 2023A three-dimensional Finite Fracture Mechanics model for predicting free edge delamination
- 2023A computational framework for crack propagation along contact interfaces and surfaces under loadcitations
- 2023Three-dimensional semi-analytical investigation of interlaminar stresses in composite laminates
- 2023Maritime applications of fibre reinforced polymer composites
- 2023A semi-analytical method for measuring the strain energy release rates of elliptical cracks
- 2023Studies on the impact and compression-after-impact response of ‘Double-Double’ carbon-fibre reinforced composite laminates
- 2023Failure analysis of unidirectional composites under longitudinal compression considering defects
- 2023Exploring the elastic properties of woven fabric composites: a machine learning approach for improved analysis and designcitations
- 2021On the importance of finite element mesh alignment along the fibre direction for modelling damage in fibre-reinforced polymer composite laminatescitations
- 2020Hierarchical finite element-based multi-scale modelling of composite laminatescitations
- 2020Investigation of the free-edge stresses in composite laminates using three-dimensional hierarchic finite elements
- 2020A three-dimensional hierarchic finite element-based computational framework for the analysis of composite laminatescitations
- 2019A unified framework for the multi-scale computational homogenisation of 3D-textile compositescitations
- 2018Mortar Contact Formulation Using Smooth Active Set Strategy Applied to 3D Crack Propagation
- 2018Multiscale Computational Homogenisation of 3D Textile-based Fiber Reinforced Polymer Composites
- 2017Multi-scale Computational Homogenisation to Predict the Long-Term Durability of Composite Structures.citations
- 2016Multi-Scale Computational Homogenisation of the Fibre-Reinforced Polymer Composites Including Matrix Damage and Fibre-Matrix Decohesion
- 2015Hierarchical Finite Element Based Multiscale Computational Homogenisation of Coupled Hygro-Mechanical Analysis for Fibre-Reinforced Polymers
- 2015Multiscale computational homogenisation to predict the long-term durability of composite structures
- 2014Computational homogenisation of fibre reinforced composites
Places of action
Organizations | Location | People |
---|
document
Multiscale Computational Homogenisation of 3D Textile-based Fiber Reinforced Polymer Composites
Abstract
Keywords: Fiber reinforced polymer composites, 3D textile/woven composites, Finite element analysis, Multiscale computational homogenization. This paper presents a multiscale computational homogenisation approach for the calculation of homogenised structural level mechanical properties of 3D textile/woven based fiber reinforced polymer (FRP) composites. Textile or woven composites, in which interlaced fibres are used as reinforcement, are a class of FRP composites which provide flexibility of design and functionality and are used in many engineering applications, including ships, aircrafts, automobiles, civil structures and prosthetics [1]. The more recently developed 3D-textile composites, consisting of 3D arrangements of yarns in a polymer matrix, allow weaving of near-net-shape and complex structures as compared to the traditional 2D-textile composites. In addition, these 3D-textile composites provide high through-thickness mechanical properties, lower manufacturing cost and improved impact and delamination resistance. The macro or structural level mechanical properties of these composites are rooted in their underlying complicated and heterogeneous micro structures. The heterogeneous microstructure of these composites requires a detailed multiscale computational homogenisation, which results in the macroscopic constitutive behaviour based on their microscopically heterogeneous representative volume elements (RVE). Elliptical cross sections and cubic splines are used respectively to model the cross sections and paths of the yarns within these RVEs. The RVE geometry along with other input parameters, e.g. material properties and boundary conditions, are modelled in CUBIT/Trelis using a parameterised Python script. The multiscale computational homogenisation scheme, with a unified imposition of RVE boundary conditions, is implemented in MoFEM (Mesh Oriented Finite Element Method) [2], which allows convenient switching between linear displacement, uniform traction and periodic boundary conditions. MoFEM utilises hierarchic basis functions [3], which permits the use of arbitrary order of approximation leading to accurate results for relatively coarse meshes. The matrix and yarns within the RVEs are modelled by considering isotropic and transversely isotropic materials models respectively. The principal direction of the yarns required for the transversely isotropic material model is calculated using a computationally inexpensive potential flow analysis along these yarns. Furthermore, the computational framework is designed to take advantage of distributed memory high-performance computing. The implementation and performance of the computational tool is demonstrated with a variety of 2.5D and 3D woven based FRP composites including 3D orthogonal interlock, 3D orthogonal layer-to-layer interlock, 3D orthogonal through-the-thickness angle interlock, 2.5D layer-to-layer angle interlock and 2.5D layer-layer angle interlock [4].