People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Xiao, Sanshui
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Efficient Multi-emitter Near Field Response Calculation for Multilayer Graphene Environments
- 2017Optical reconfiguration and polarization control in semicontinuous gold films close to the percolation threshold
- 2017Optical reconfiguration and polarization control in semicontinuous gold films close to the percolation threshold
- 2010Capacitance tuning of nanoscale split-ring resonatorscitations
- 2010Nanoimprinted polymer photonic crystal dye laserscitations
- 2010Nanoimprinted polymer photonic crystal dye laserscitations
Places of action
Organizations | Location | People |
---|
document
Optical reconfiguration and polarization control in semicontinuous gold films close to the percolation threshold
Abstract
In this work we have studied the intrinsic and reconfigured optical properties of semi-continuous gold films, fabricated via a simple metal evaporation technique. We have prepared three films of nominal thicknesses 5, 6, and 7nm. After fabrication the films are illuminated in areas by scanning a fs-pulsed laser over the films (Fig. 1). This results in permament morphological changes in the films observed in a scanning transmission electron microscope (STEM), see Fig. 2. The laser writing also introduces a polarized feature in the transmission spectra of the films. We have performed electron energy-loss spectroscopy (EELS) measurements and extensive finite-element simulations of our sample morphologies to better understand the origin of this polarization effect as well as the distribution of plasmonic resonances with and without laser<br/>writing.