People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Olubanwo, Adegoke
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2022Characteristics of a novel lightweight concretecitations
- 2020Potential and current distribution across different layers of reinforcement in reinforced concrete cathodic protection system- A numerical studycitations
- 2019Predicting the Corrosion Rate of Steel in Cathodically Protected Concrete Using Potential Shiftcitations
- 2018Finite Element Analysis of the Flexural behaviour of Steel-Reinforced GEM-TECH Cementitious Materialcitations
- 2018Investigation of intrinsic de-bonding in bonded concrete overlays: Material characterisation and numerical Studycitations
- 2018Strength and Hydraulic Conductivity of Cement and By - Product Cementitious Materials Improved Soil
- 2017Utilisation of waste cardboard and Nano silica fume in the production of fibre cement board reinforced by glass fibrescitations
- 2016Optimum design for sustainable, 'green' concrete overlays. Part III
- 2016Optimum Design for Sustainable, ‘Green’ Concrete Overlays. Part II: Shear Failure at Cracks and Inadequate Resistance to Reflection Cracking
- 2016Optimum Design for Sustainable, ‘Green’ Concrete Overlays. Part I: (a) Mix-Design, (b) Controlling Flexural Failure
- 2015Interfacial Delamination Failure in Bonded Concrete Overlay Systems - A Review of Theories and Modelling Methods
- 2015Applied mixture optimization techniques for paste design of bonded roller-compacted fibre reinforced polymer modified concrete (BRCFRPMC) overlayscitations
Places of action
Organizations | Location | People |
---|
document
Optimum design for sustainable, 'green' concrete overlays. Part III
Abstract
<p>This study provides the theories and viable modelling techniques for predicting and simulating intrinsic causes of delamination failure in Bonded Concrete Overlays. Optimum overlay mixture was formulated using Composite Desirability Analysis (CDA). The experimental treatments considered both structural and elastic stability requirements of the BCOs. Through serial material and interface fracture testing, the optimum overlay material was characterised and used to predict the restraint capacities of the overlay and the interface to delamination failure under Mixed-Mode fracture process. The numerical analysis was implemented using Interface Cohesive Zone Model (ICZM). The FEA results showed that the delamination driving force increases with increase in BCO structural scale and mismatched elastic parameter.</p>