People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duplan, Yannick
Université Grenoble Alpes
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Investigation of the multiple-fragmentation process and post-fragmentation behaviour of dense and nacre-like alumina ceramics by means of tandem impact experiments and tomographic analysis ; Examination du processus de fragmentation multiple et du comportement post-fragmentation de céramiques d'alumine dense et nacrée au moyen d'expériences d'impact tandem et d'analyse tomographiquecitations
- 2021Ultra-high speed X-ray imaging of dynamic fracturing in cementitious materials under impact ; Imagerie aux rayons X ultra-rapide de la fracturation dynamique dans des matériaux cimentaires sous impactcitations
- 2020Comparison of Two Processing Techniques to Characterise the Dynamic Crack Velocity in Armour Ceramic Based on Digital Image Correlation
- 2020 Caractérisation expérimentale et modélisation des propriétés de rupture et de fragmentation dynamiques d'un noyau de munition et de céramiques à blindage
- 2020Comparison of Two Processing Techniques to Characterise the Dynamic Crack Velocity in Armour Ceramic Based on Digital Image Correlation ; Comparaison de deux techniques de traitement pour caractériser la vitesse de fissuration dynamique dans la céramique de blindage basée sur la corrélation d'images numériques
- 2019Identification of Johnson-Cook Model Parameters of an AP Projectile Core Based on Two Shear-Compression Specimen Geometries and One Dog-Bone Sample ; Identification des Paramètres du Modèle de Johnson-Cook d'un Noyau de Projectile AB (Anti-Blindage) Basée sur Deux Échantillons Compression-Cisaillement et une Géométrie en Os de Chien
- 2019Numerical Investigation of Damage and Failure Modes Induced in a Bilayer Configuration Subjected to Ballistic Limit Velocity Test
- 2019 Identification of Johnson-Cook Model Parameters of an AP Projectile Core Based on Two Shear-Compression Specimen Geometries and One Dog-Bone Sample
- 2018Numerical analysis of a testing technique to investigate the dynamic crack propagation in armour ceramic ; Analyse numérique d'une technique d'essai pour évaluer la propagation dynamique d'une fissure dans les blindages céramiques
- 2018 Identification of Johnson-Cook Model Parameters of an AP Projectile Core Based on Two Shear-Compression Specimen Geometries and One Dog-Bone Sample
- 2017A testing technique to investigate the dynamic crack propagation in armour ceramic - Numerical analysis through « Rockspall »
Places of action
Organizations | Location | People |
---|
document
Identification of Johnson-Cook Model Parameters of an AP Projectile Core Based on Two Shear-Compression Specimen Geometries and One Dog-Bone Sample
Abstract
ABSTRACT Armour-Piercing (AP) projectiles constitute a major issue when designing military armours for personal and vehicle protection. Bi-layer shieldings are made of a ceramic front plate and a ductile composite/metal backplate to stop, erode and fragment the projectile. The bullet’s core, made of tungsten or strong steel alloy, defines the penetration capability of the projectile so its characterisation is crucial for both understanding failure modes occurring in the core and performing a numerical simulation of impact. Nevertheless, such simulations require constitutive models for which the identification of parameters is often sensitive and even dependent on the specimen itself. In this work, a high-strength steel core extracted from a 7.62 x 39 mm API-BZ projectile is tested in quasi-static loading conditions at room and high temperatures and at dynamic loading rates in order to determine parameters used in the Johnson-Cook plasticity and failure models. Three geometries are investigated: a dog-bone specimen, a Shear-Compression Specimen (SCS) and a modified SCS. The equivalent von Mises stress and the equivalent plastic strain in the sample are deduced so the Johnson-Cook model parameters can be obtained. Results show that, while flow stress resistance is similar for the three specimens, the ductility and failure strains vary to some extent, thus changing some of the parameters used in the Johnson-Cook model. This question raises the concern of the appropriate choice of sample geometry to identify the model parameters.