People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Din, Rameez Ud
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2019Characterization of blisters on powder coated aluminium AA5006 architectural profilescitations
- 2018An electroplated copper–silver alloy as antibacterial coating on stainless steelcitations
- 2018Transformation of iron containing constituent intermetallic particles during hydrothermal treatment
- 2017Interfacial Interaction of Oxidatively Cured Hydrogen Silsesquioxane Spin-On-Glass Enamel with Stainless Steel Substratecitations
- 2017Steam based conversion coating on AA6060 alloy: Effect of sodium silicate chemistry and corrosion performancecitations
- 2017Corrosion Resistance of AISI 316L Coated with an Air-Cured Hydrogen Silsesquioxane Based Spin-On-Glass Enamel in Chloride Environmentcitations
- 2017Influence of steam-based pre-treatment using acidic chemistries on the adhesion performance of powder coated aluminium alloy AA6060citations
- 2016Hydrogen Silsesquioxane based silica glass coatings for the corrosion protection of austenitic stainless steelcitations
- 2016Microstructure and corrosion performance of steam-based conversion coatings produced in the presence of TiO2 particles on aluminium alloyscitations
- 2016Microstructure and corrosion performance of steam-based conversion coatings produced in the presence of TiO 2 particles on aluminium alloyscitations
- 2015Performance Comparison of Steam-Based and Chromate Conversion Coatings on Aluminum Alloy 6060citations
- 2015Corrosion issues of powder coated AA6060 aluminium profilescitations
- 2015Accelerated growth of oxide film on aluminium alloys under steam: Part II: Effects of alloy chemistry and steam vapour pressure on corrosion and adhesion performancecitations
- 2015Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part II corrosion performancecitations
- 2015Accelerated growth of oxide film on aluminium alloys under steam: Part I: Effects of alloy chemistry and steam vapour pressure on microstructurecitations
- 2015Aluminium Alloy AA6060 surface treatment with high temperature steam containing chemical additivescitations
- 2015Role of acidic chemistries in steam treatment of aluminium alloyscitations
- 2015Steam assisted oxide growth on aluminium alloys using oxidative chemistries: Part I Microstructural investigationcitations
- 2015Accelerated growth of oxide film on aluminium alloys under steam:Part I: Effects of alloy chemistry and steam vapour pressure on microstructurecitations
- 2015Steam assisted oxide growth on aluminium alloys using oxidative chemistries:Part i Microstructural investigationcitations
- 2014Steam generated conversion coating on aluminium alloys
- 2014Characterization of steam generated anti-corrosive oxide films on Aluminium alloys
- 2014Anti-corrosive Conversion Coating on Aluminium Alloys Using High Temperature Steam
- 2013Steam Assisted Accelerated Growth of Oxide Layer on Aluminium Alloys
Places of action
Organizations | Location | People |
---|
conferencepaper
Characterization of steam generated anti-corrosive oxide films on Aluminium alloys
Abstract
Aluminium and its alloys are widely used in structural and transportation industry owing to their high strength to weight ratio. The surface of aluminium under normal conditions has a thin oxide film (2.5-10 nm) responsible for its inherent corrosion resistance. This oxide film can further be converted or transformed into functional conversion coatings in order to enhance corrosion resistance and adhesion to paint systems. Chromium based conversion coatings have been extensively used on aluminium alloys to improve adhesion of subsequent paint layers and corrosion resistance. However, the use of hexavalent chromium is strictly regulated due to its toxic nature and suspected carcinogenicity. So, it is highly imperative to develop other alternatives for chrome conversion coatings. Treatment of aluminium with natural water at elevated temperatures results in the formation of different forms of aluminium oxide (γ-AlO(OH) , Al(OH)3) depending on the preparation parameters/conditions. Moreover, with the knowledge of factors controlling film growth, composition and morphology, such oxide layers carry huge potential for practical applications. Pure aluminium (AA1090, 99.94 wt. %) and other aluminium alloy surfaces were exposed to high pressure steam produced by an autoclave at a temperature of 107 – 121 °C and pressure of 15 -17 psi for 10 minutes to produce a thin coating of aluminium oxide. The aim of this study is to understand the effect of high pressure steam with and without different chemical additives on surface morphology and growth of oxide film on different intermetallic particles and corrosion behaviour of such alloys.Surface morphology was observed by using FEG-SEM, EDX and FIB-SEM. Metal oxide surface characterization and compositional depth profiling were investigated by using XRD, XPS and GD-OES respectively. Potentiodynamic polarization measurements and acid salt spray testing were used to study corrosion behavior of the produced coatings.