People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
El-Naaman, Salim Abdallah
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2019An investigation of back stress formulations under cyclic loadingcitations
- 2016Attaining the rate-independent limit of a rate-dependent strain gradient plasticity theorycitations
- 2016On modeling micro-structural evolution using a higher order strain gradient continuum theorycitations
- 2015Strain gradient crystal plasticity: A continuum mechanics approach to modeling micro-structural evolution
- 2013Observations on Mode I ductile tearing in sheet metalscitations
Places of action
Organizations | Location | People |
---|
document
Strain gradient crystal plasticity: A continuum mechanics approach to modeling micro-structural evolution
Abstract
In agreement with dislocation theory, recent experiments show, both quantitatively and qualitatively, how geometrically necessary dislocations (GNDs) distribute in dislocation wall and cell structures. Hence, GND density fields are highly localized with large gradients and discontinuities occurring between the cells. This behavior is not typical for strain gradient crystal plasticity models. The present study employs a higher order extension of conventional crystal plasticity theory in which the viscous slip rate is influenced by the gradients of GND densities through a back stress. A phenomenological back stress formulation is proposed, through which the effect of the GND gradient exponent can be studied. It is shown that this model can lead to more localized GND distributions.