Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Felter, Christian Lotz

  • Google
  • 4
  • 5
  • 26

Technical University of Denmark

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2019Parameter window for assisted crack tip flipping: Studied by a shear extended Gurson model7citations
  • 2019Micro-mechanics based cohesive zone modeling of full scale ductile plate tearing: From initiation to steady-state19citations
  • 2016Crack Tip Flipping Under Mode I/III Tearingcitations
  • 2016Crack Tip Flipping Under Mode I/III Tearingcitations

Places of action

Chart of shared publication
Nielsen, Kl
3 / 42 shared
Andersen, Rasmus Grau
1 / 5 shared
Jensen, Lasse Specht
1 / 1 shared
Specht Jensen, Lasse
1 / 1 shared
Nielsen, Kim Lau
1 / 3 shared
Chart of publication period
2019
2016

Co-Authors (by relevance)

  • Nielsen, Kl
  • Andersen, Rasmus Grau
  • Jensen, Lasse Specht
  • Specht Jensen, Lasse
  • Nielsen, Kim Lau
OrganizationsLocationPeople

document

Crack Tip Flipping Under Mode I/III Tearing

  • Jensen, Lasse Specht
  • Nielsen, Kl
  • Felter, Christian Lotz
Abstract

Crack tip flipping, where the fracture surface alternates from side to side in 45° shear bands, seems to be an overlooked propagation mode in Mode I sheet tearing often disregarded as  “transitional” or tied to randomness in the material. In fact, such observations rarely make it to the literature. However, crack tip flipping is a true propagation mode, but unlike those already established: i) it never settles in a steady-state as the near tip stress/strain field continuously change, and ii) the mechanism governing failure evolves behind the leading crack tip. Recent research has revealed new insight into this intriguing behavior of a crack propagating by the void nucleation and growth mechanism, and the work presented compiles both published and unpublished experimental and numerical findings. E.g. in a recent attempt to gain control of the flipping crack a slight Mode III was imposed with interesting results.

Topics
  • impedance spectroscopy
  • surface
  • crack
  • void