People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shirzadi, Amir A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2020Diffusion bonding of TiC or TiB reinforced Ti–6Al–4V matrix composites to conventional Ti–6Al–4V alloycitations
- 2019Development of Auto Ejection Melt Spinning (AEMS) and its application in fabrication of cobalt-based ribbonscitations
- 2019Layered Structures of Ti-6Al-4V Alloy and Metal Matrix Composites on Its Base Joint by Diffusion Bonding and Friction Weldingcitations
- 2019Modelling and design of new stainless-steel welding alloys suitable for low-deformation repairs and restoration processescitations
- 2019Mechanical Properties and Processing Techniques of Bulk Metal–Organic Framework Glassescitations
- 2019A new method for liquid-phase bonding of copper plates to aluminum nitride (AlN) substrates used in high-power modulescitations
- 2018Gallium-assisted diffusion bonding of stainless steel to titanium; microstructural evolution and bond strengthcitations
- 2016Effect of Cu addition on microstructure and impact toughness in the simulated coarse-grained heat-affected zone of high-strength low-alloy steelscitations
- 2015Microstructure and Interfacial Reactions During Vacuum Brazing of Stainless Steel to Titanium Using Ag-28 pct Cu Alloycitations
- 2015Austenite memory and variant selection in a novel martensitic welding alloycitations
- 2013Microstructure and interfacial reactions during active metal brazing of stainless steel to titaniumcitations
- 2012Effect of SiC reinforcement particles on the grain density in a magnesium-based metal-matrix composite: modelling and experimentcitations
- 2012Crystallization model of magnesium primary phase in the AZ91/SiC compositecitations
- 2011Combined effect of stress and strain on crystallographic orientation of bainite
- 2011Design of weld fillers for mitigation of residual stresses in ferritic and austenitic steel weldscitations
- 2010Neural network modelling of hot deformation of austenite
- 2010Comparison of alloying concepts for Low Transformation Temperature (LTT) welding consumables
- 2010Modelling of residual stress minimization through martensitic transformation in stainless steel welds
- 2009Stainless steel weld metal designed to mitigate residual stressescitations
- 2009Bainite orientation in plastically deformed austenitecitations
- 2008Joining ceramics to metals using metallic foamcitations
Places of action
Organizations | Location | People |
---|
conferencepaper
Comparison of alloying concepts for Low Transformation Temperature (LTT) welding consumables
Abstract
Fatigue cracks often initiate at welds as a consequence of large residual stresses and changes in geometry acting as stress concentrators. A concept showing promise in improving the fatigue life of welded components is the use of so called Low Transformation Temperature (LTT) welding consumables. These reduce the accumulation of residual stresses in welded joints by exploiting transformation plasticity to compensate for thermal contraction. This in turn enhances fatigue life. Three LTT alloys, based on different combinations of mainly Ni and Cr to produce low martensite- start (M<sub>s</sub>) temperatures, have been studied. Fatigue testing showed similar results with a significant increase in fatigue strength for fillet and butt weld configurations for all three compositions. There was a pronounced interdependence between a lower transformation temperature, lower residual stresses and improved fatigue strength. The LTT effect was clearly related to the weld metal transformation temperature rather than the alloying concept per se. Dilution was an important factor in single-pass applications with M<sub>s</sub> temperatures increasing by up to 70°C compared to the corresponding all-weld metals.A 13Cr 6Ni alloy was identified as the most promising LTT-alloy considering not only fatigue performance but also aspects such as safety against hot and cold cracking, strength, toughness and ductility. This alloy is crack safe thanks to its ferritic solidification and as a bonus offers some corrosion resistance. Further optimisation is needed, though, to compensate for dilution effects in single-pass applications.