Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nicholson, Pascual Ian

  • Google
  • 4
  • 6
  • 92

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2016Robotic path planning for non-destructive testing - a custom MATLAB toolbox approach92citations
  • 2015Rapid inspection of composite and additive manufactured components using advanced ultrasonic techniquescitations
  • 2014The development of a fast inspection system for complex aerospace composite structurecitations
  • 2014Robotic path planning for non-destructive testing of complex shaped surfacescitations

Places of action

Chart of shared publication
Mineo, Carmelo
4 / 15 shared
Cooper, Ian
4 / 5 shared
Pierce, Stephen
2 / 51 shared
Liaptsis, Dimos
2 / 2 shared
Freemantle, Richard
1 / 1 shared
Wright, Ben
2 / 2 shared
Chart of publication period
2016
2015
2014

Co-Authors (by relevance)

  • Mineo, Carmelo
  • Cooper, Ian
  • Pierce, Stephen
  • Liaptsis, Dimos
  • Freemantle, Richard
  • Wright, Ben
OrganizationsLocationPeople

document

The development of a fast inspection system for complex aerospace composite structure

  • Liaptsis, Dimos
  • Mineo, Carmelo
  • Nicholson, Pascual Ian
  • Wright, Ben
  • Cooper, Ian
Abstract

The increasing use of composite materials across a range of industries is well documented. In the aerospace industry this has been driven by a desire to build lighter structures, to improve corrosion, impact and fatigue resistance and to reduce the cost of manufacture. Although great strides have been made in these areas, manufacturing costs are still a concern. This is partly due to the cost of raw materials, but also due to the historically labour intensive method of manufacture. The industry requirement to inspect every part can result in the Non-Destructive Testing process becoming a bottleneck resulting in reduced production throughput. The continued development of ever more complex composite geometries will add to the inspection cost burden.IntACom is a development project with the aim of reducing the time taken for inspection of complex geometry composite components by a factor of four. It will do this by addressing three areas:(1) Automation of current manual inspection; (2) Enhancement of existing semi-automated systems through the use of multiple transducers and Ultrasonic phased array technology (PAUT); (3) Software enhancement through the use of techniques such as assisted defect recognition and scan display management.The heart of the system is an inspection cell comprising two 6-axis robotic arms each capable of working independently and cooperatively. The arms deploy end effectors carrying ultrasonic transducers coupled to state of the art Phased Array Ultrasonic Testing (PAUT) or full matrix capture (FMC) acquisition systems. A single operator interface will control all aspects from initial loading of part data, through scanning of the part to data analysis.Currently about three quarters complete, this paper will give an overview of the progress to date and the planned outcomes.

Topics
  • impedance spectroscopy
  • corrosion
  • fatigue
  • composite
  • defect
  • ultrasonic