People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Adamopoulos, George
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023Solution-Processed Metal Oxide Gate Dielectrics and Their Implementations in Zinc Oxide Based Thin Film Transistors
- 2022Solution-processed thin film transistors incorporating YSZ gate dielectrics processed at 400 °ccitations
- 2018Characterization of spray pyrolyzed Ga2O3 thin films for thin-film transistor device applications
- 2018(INVITED) Solution-processed metal oxide-based CMOS
- 2017Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in aircitations
- 2017Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in air
- 2017(INVITED) Solution processed metal oxide-based electronics for displays applications employing both inkjet and spray coating techniques
- 2016(INVITED) Solution Processed SiO2 and high-k Dielectrics for MO-based CMOS TFTs
- 2016(INVITED) Solution Processed High-k Dielectrics for Thin Film Transistors Employing Metal Oxide-based Semiconducting Channels
- 2014Solution processed aluminium titanate dielectrics for their applications in high mobility ZnO based thin film transistors
- 2014Structure and properties of solution processed hafnium oxide gate dielectrics for their applications in high mobility ZnO based thin film transistors
- 2013Be-doped ZnO thin-film transistors and circuits fabricated by spray pyrolysis in aircitations
- 2011Structural and Electrical Characterization of ZnO Films Grown by Spray Pyrolysis and Their Application in Thin-Film Transistorscitations
- 2005Optical and electronic properties of plasma-deposited hydrogenated amorphous carbon nitride and carbon oxide filmscitations
- 2004Hydrogen content estimation of hydrogenated amorphous carbon by visible Raman spectroscopycitations
- 2003The electrochemical reactivity of amorphous hydrogenated carbon nitrides for varying nitrogen contents: the role of the substratecitations
- 2000Determination of bonding in amorphous carbons by electron energy loss spectroscopy, Raman scattering and X-ray reflectivitycitations
Places of action
Organizations | Location | People |
---|
document
(INVITED) Solution Processed High-k Dielectrics for Thin Film Transistors Employing Metal Oxide-based Semiconducting Channels
Abstract
Whilst progress on solution-processed oxide semiconductors has been rapidly advancing, research efforts towards the development of dielectric materials has been relatively slow, with most of the reported work performed using conventional dielectrics based on SiO2 that usually results in high voltage transistor operation and hence increased power consumption. This ever increasing demand for high performance thin film transistors based on metal oxide channels has given a boost to the development of alternatives to SiO2 gate dielectrics with desirable characteristics in terms of thermal stability, band offsets and interface quality. <br/><br/>To that end and among the different approaches, the use of high-k dielectrics is arguably the most attractive option, since it can enable low leakage currents, through the use of physically thicker films, as well as low-voltage operation.<br/><br/>This work reports on the structure and properties of a wide range of solution-processed binary and ternary gate dielectrics and their implementation in TFTs employing n and p type metal oxide-based semiconducting channels. It mainly focuses on the band offsets, dielectric and optical as well as the dielectric/semiconductor interface properties and their effects on the device operation.<br/><br/><br/>References:<br/><br/>1. M. Esro, R. Mazzocco, G. Vourlias, O. Kolosov, A. Krier, W. I. Milneand G. Adamopoulos, Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors, Appl. Phys. Lett. 106, 203507, 2015<br/>2. M. Esro, S. Georgakopoulos, H. Lu, G. Vourlias, A. Krier, W. I. Milne, W. P. Gillin and G. Adamopoulos, Solution processed SnO2:Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes, J. Mater. Chem. C, 4, 3563, 2016.<br/>3. D. Afouxenidis, R. Mazzocco, G. Vourlias, P. J. Livesley, A. Krier, W. I. Milne, O. Kolosov and G. Adamopoulos, ZnO-based thin film transistors employing aluminum titanate gate dielectrics deposited by spray pyrolysis at ambient air, ACS Appl. Mater. Inter., 7, 7334, 2015.<br/>4. M. Esro, G. Vourlias, C. Somerton, W. I. Milne and George Adamopoulos, High mobility ZnO thin film transistors based on solution-processed hafnium oxide gate dielectrics, Adv. Funct. Mater., 25, 134, 2015.<br/>