People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Robinson, Bj
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping modecitations
- 2022Thermoelectric properties of organic thin films enhanced by π-π stackingcitations
- 2021Optimised power harvesting by controlling the pressure applied to molecular junctionscitations
- 2020Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Filmscitations
- 2020Tuning the thermoelectrical properties of anthracene-based self-assembled monolayerscitations
- 2020Molecular-scale thermoelectricity: As simple as 'ABC'citations
- 2017Correlation of nano-scale electrical and topographical mapping of buried nanoscale semiconductor junctions
- 2017Large-Area 2D-0D Heterostructures via Langmuir-Blodgett Film Deposition
- 2017Characterisation of local thermal properties in nanoscale structures by scanning thermal microscopy
- 2017SPM characterisation of nanomechanical proprieties of C60 monolayer formed by LB
- 2016Towards Robust Electroactive Biomaterials
- 2014Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxycitations
- 2014Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopycitations
Places of action
Organizations | Location | People |
---|
document
Large-Area 2D-0D Heterostructures via Langmuir-Blodgett Film Deposition
Abstract
The integration of various low dimensional materials into large area, scalable, heterostructures is highly desirable. For example, 0D semiconducting nanocrystals (NCs) exhibit attractive optical emission and absorption properties, while single layer 2D graphene is ideally suited to act as a transparent electrode due to its superior electrical and mechanical properties.<br/>The integration of silica encapsulated1, 0D semiconducting NCs with 2D graphene grown by chemical vapor deposition (CVD) is presented in this work. Large area NC films were deposited onto graphene using the Langmuir-Blodgett (LB) method, a technique which allows for the deposition of nanomaterials on a liquid surface. The surface properties of the silica coated NCs necessitated the use of a novel electrospray method (Figure 1a) to successfully spread the NCs2. Large area graphene/NC/graphene (Gr/NC/Gr) heterostructures, seen in Figure 1b, were assembled after film deposition. Topographic, mechanical and electrical properties were investigated using scanning probe techniques and scanning electron microscopy. Photoluminescence (PL) and Raman measurements provided complementary optical and spectroscopic information.<br/>The liquid employed in the LB trough was found to be critical for successful film transfer. By using dimethyl sulfoxide instead of water, continuous, homogenous films were obtained which maintained the optical properties of the NCs (Figure 1c). Raman measurements revealed a significant intensity enhancement of the top graphene sheets, along with additional characteristics attributed to the rippling and straining of the graphene on the NC film.