Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bromley, Michael

  • Google
  • 7
  • 1
  • 3

Lancaster University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2013The metallisation of insulating substrates with nano-structured metal films of controllable pore dimension2citations
  • 2013The development of nanoporous metal membranes for analytical separartionscitations
  • 2013The development of nanoporous metal membranes for analytical separartionscitations
  • 2013The nanoporous metallisation of polymer membranes through photocatalytically initiated electroless deposition1citations
  • 2012Method for formation of porous metal coatingscitations
  • 2012The nanoporous metallisation of insulating substrates through Photocatalytically Initiated Electroless Deposition (PIED)citations
  • 2012Semiconductor photocatalysis and metal depositioncitations

Places of action

Chart of shared publication
Boxall, Colin
6 / 26 shared
Chart of publication period
2013
2012

Co-Authors (by relevance)

  • Boxall, Colin
OrganizationsLocationPeople

booksection

Semiconductor photocatalysis and metal deposition

  • Bromley, Michael
  • Boxall, Colin
Abstract

Semiconductor photocatalysis has many, varied applications with frequent research in environmental areas such as pollution abatement, heavy metal recovery, water and air purification and the destruction of microorganisms as well as hydrogen production from water, corrosion inhibition and self-cleaning surfaces. However, another field with considerable scope lies in the use of photocatalysis for metal deposition.<br/>Photocatalytic metallisation of semiconductor surfaces is an established technology that has been employed predominantly to improve and enhance the photocatalytic properties of the semiconductor, a process known as doping. This review examines the use of semiconductor photocatalysis in driving conventional metal deposition techniques, in photocatalytic sensitisation of substrates prior to a further electroless deposition step and its potential utility in the initiation of electroless metal deposition for the formation of complete metal layers. The latter will focus particularly on the recently developed Photocatalytically Initiated Electroless Deposition (PIED) process, a one-step metal deposition process which utilises photocatalysis to directly metallise insulating substrate surfaces. The process is spatially selective and offers several advantages over traditional, non-photocatalytic techniques such as enhanced controllability and purity of the deposit as well as being operationally cheaper and environmentally cleaner with reduced material requirements and fewer preparation steps.<br/>PIED has been successfully utilised to produce layers of various metals including Ag and Pd on mesoporous TiO2 (m-TiO2) coated quartz glass slides and polymer substrates. Such metallised insulating materials have potentially wide applications in membrane and separation technology, electrode / solid electrolyte composites for energy storage and fuel cells.<br/>

Topics
  • Deposition
  • impedance spectroscopy
  • surface
  • polymer
  • corrosion
  • glass
  • semiconductor
  • glass
  • composite
  • Hydrogen