Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

James, Mike R.

  • Google
  • 6
  • 13
  • 588

Lancaster University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2017Optimising UAV topographic surveys processed with structure-from-motion499citations
  • 2013Degassing-induced crystallization in basalts46citations
  • 2012The accuracy of photo-based structure-from-motion DEMscitations
  • 2011Quantifying degassing-driven crystal growth in basaltic lavascitations
  • 2004Viscoelastic behaviour of basaltic lavas.34citations
  • 2003Internal friction spectroscopy in Li20-2SiO2 partially crystallised glasses.9citations

Places of action

Chart of shared publication
Doleire-Oltmanns, S.
1 / 1 shared
Robson, Stuart
2 / 3 shared
Niethammer, U.
1 / 1 shared
Tuffen, Hugh
2 / 7 shared
Pinkerton, Harry
2 / 2 shared
Applegarth, Louisa
2 / 2 shared
Cashman, Katharine V.
1 / 2 shared
Müller, K.
2 / 10 shared
Pinkerton, H.
1 / 1 shared
Bagdassarov, N.
1 / 1 shared
Bagdassarov, N. S.
1 / 1 shared
Schmeling, H.
1 / 1 shared
Deubener, J.
1 / 17 shared
Chart of publication period
2017
2013
2012
2011
2004
2003

Co-Authors (by relevance)

  • Doleire-Oltmanns, S.
  • Robson, Stuart
  • Niethammer, U.
  • Tuffen, Hugh
  • Pinkerton, Harry
  • Applegarth, Louisa
  • Cashman, Katharine V.
  • Müller, K.
  • Pinkerton, H.
  • Bagdassarov, N.
  • Bagdassarov, N. S.
  • Schmeling, H.
  • Deubener, J.
OrganizationsLocationPeople

document

The accuracy of photo-based structure-from-motion DEMs

  • Robson, Stuart
  • James, Mike R.
Abstract

Data for detailed digital elevation models (DEMs) are usually collected by expensive laser-based techniques, or by photogrammetric methods that require expertise and specialist software. However, recent advances in computer vision research now permit 3D models to be automatically derived from unordered collections of photographs, offering the potential for significantly cheaper and quicker DEM production. Here, we assess the accuracy of this approach for geomorphological applications using examples from a coastal cliff and a volcanic edifice.<br/>The reconstruction process is based on a combination of structure-from-motion and multi-view stereo algorithms (SfM-MVS). Usingmultiple photographs of a scene taken from different positions with a consumer-grade camera, dense point clouds (millions of points) can be derived. Processing is carried out by automated ‘reconstruction pipeline’ software downloadable from the internet, e.g. http://blog.neonascent.net/archives/bundler-photogrammetry-package/. Unlike traditional photogrammetric approaches, the initial reconstruction process does not require the identification of any control points or initial camera calibration and is carried out with little or no operator intervention. However, such reconstructions are initally un-scaled and un-oriented so additional software (http://www.lancs.ac.uk/ staff/jamesm/software/sfm_georef.htm) has been developed to permit georeferencing. Although this step requires the presence of some control points or features within the scene, it does not have the relatively strict image acquisition and control requirements of traditional photogrammetry. For accuracy, and to allow error analysis, georeferencing observations are made within the image set, rather than requiring feature matching within the point cloud.<br/>In our coastal example, 133 photos taken with a Canon EOS 450D and 28 mm prime lens, from viewing distances of ~20 m, were used to reconstruct a ~60 m long section of eroding cliff. The resulting surface model was compared with data collected by a Riegl LMS-Z210ii terrestrial laser scanner. Differences between the surfaces were dominated by the varying effects of occlusions on the techniques, and systematic distortion of the SfM-MVS model along the length of the cliff could not be resolved over the ±15 mm precision of the TLS data.<br/>For a larger-scale example, a ~1.6 km wide region over the summit of Piton de la Fournaise volcano was reconstructed using 133 photos taken with a Canon EOS D60 and 20 mm prime lens, from a microlight aircraft (with a representative viewing distance of 1.0 km). In this case, the resulting DEM showed an RMS error of 1.0 m when compared with the results from traditional photogrammetry and some areas of systematic error were evident. Such errors were minimised by reprocessing the SfM-MVS results with a more sophisticated camera model than is integrated into the reconstruction pipeline.<br/>In combination, the results indicate that, with a good, convergent image set, SfM-MVS can be anticipated to deliver relative precisions of 1:1000 or better, for geomorphological applications. However, under certain conditions, the restricted camera model used can result in detectable error. We highlight the requirement for new network design tools that will help optimise image collection, facilitate error visualisation and allow a user to determine whether their image network is fit for purpose. <br/>

Topics
  • impedance spectroscopy
  • surface
  • discrete element method