People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Li, Tao
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Structural, optical, and thermal properties of BN thin films grown on diamond via pulsed laser depositioncitations
- 2023Structural, optical, and thermal properties of BN thin films grown on diamond via pulsed laser deposition
- 2022A Carboranyl Electrolyte Enabling Highly Reversible Sodium Metal Anodes via a “Fluorine‐Free” SEIcitations
- 2020Investigation of flame retarded polypropylene by high-speed planar laser-induced fluorescence of OH radicals combined with a thermal decomposition analysiscitations
- 2020Spacer-defined intrinsic multiple patterningcitations
- 2018Structure-function correlative microscopy of peritubular and intertubular dentinecitations
- 2018Transition to Superwetting for a Nanostructured Surface
- 2018Transition to Superwetting for a Nanostructured Surface
- 2018Modeling salinity effect on rice growth and rice yield with ORYZA v3 and APSIM-Oryzacitations
- 2018Mapping the transition to superwetting state for nanotextured surfaces templated from block-copolymer self-assemblycitations
- 2018Mapping the transition to superwetting state for nanotextured surfaces templated from block-copolymer self-assemblycitations
- 2018Mapping the transition to superwetting state for nanotextured surfaces templated from block-copolymer self-assemblycitations
- 2016Understanding nature’s residual strain engineering at the human dentine-enamel junction interfacecitations
- 2016Wafer-Scale Nanopillars Derived from Block Copolymer Lithography for Surface-Enhanced Raman Spectroscopycitations
- 2016Effects of coating spherical iron oxide nanoparticlescitations
- 2015Fast & scalable pattern transfer via block copolymer nanolithographycitations
- 2015Nanoporous gyroid TiO2 and SnO2 by melt infiltration of block copolymer templatescitations
- 2015Nanoporous gyroid TiO 2 and SnO 2 by melt infiltration of block copolymer templatescitations
Places of action
Organizations | Location | People |
---|
document
Transition to Superwetting for a Nanostructured Surface
Abstract
According to traditional Wenzel theory, superhydrophilicity emerge when introducing roughness on an intrinsically hydrophilic surface. However, recent studies have shown a deviation from this behavior [1]. Understanding the failure mechanism will aid the design of surfaces that exhibit superhydrophilic behavior. In particular, moderately hydrophilic materials, such as polymers and other low energy materials, need a careful design, as they are particularly prone to failure.<br/><br/>In this study, we employed block copolymer nanolithography [2] with a subsequent injection molding replication in poly(methyl methacrylate). Compared to the flat reference, the roughness increased the water contact angle (from 67.6° to 99.4°); a contraction to the traditional Wenzel theory. For moderately hydrophilic substrates, a nanoscopicly pillar-built surface has a Laplace pressure barrier that prevents droplet spreading. Increasing intrinsic hydrophilicity could lower the barrier to allow superwetting. Consequently, we characterized the transition by applying a low-pressure Argon plasma to increase the surface free energy in a continuous fashion. Using apparent contact angle to probe the transition, we found a threshold of 55°.<br/><br/>Furthermore, we demonstrate how macro- and microscopic wetting phenomena are interconnected. As an example of the barrier implications, we study the condensation of water on both sides of the threshold. While flat surfaces and untreated, structured surfaces both show indelible dropwise condensation, the plasma treated, structured surface gives rise to filmwise condensation. Using a transparent polymer and designing structures to be below the diffraction limit for visible light, the threshold defines the emergence of anti-fogging properties relevant to a plethora of optical applications such as endoscopy [3].<br/><br/>References: <br/>[1] D. Kim et al., Wetting theory for small droplets on textured solid surfaces, Scientific Reports (2016) 6, 37813<br/>[2] A. Telecka et al., Nanotextured Si surfaces derived from block-copolymer self-assembly with superhydrophobic, superhydrophilic, or superamphiphobic properties, RSC Advances (2018) 8, 4204.<br/>[3] S. Sunny et al., Transparent antifouling material for improved operative field visibility in endoscopy. Proceedings of the National Academy of Sciences of the United States of America (2016), 113, 11676.