People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Canning, John
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2019Overview of high temperature fibre Bragg gratings and potential improvement using highly doped aluminosilicate glass optical fibrescitations
- 2015Ultrahigh-Temperature Regeneration of Long Period Gratings (LPGs) in Boron-Codoped Germanosilicate Optical Fibrecitations
- 2013Induction brazing of Type-I fiber Bragg gratings into Kovar ferrules exploiting Curie transitioncitations
- 2012Mechanical strength of silica fiber splices after exposure to extreme temperaturescitations
- 2006Solid-state autocatalysis and oscillatory reactions in silicate glass systems
- 2004Heat transfer within a microstructured polymer optical fibre perform
Places of action
Organizations | Location | People |
---|
document
Heat transfer within a microstructured polymer optical fibre perform
Abstract
reform heating is one of the most important steps in the polymer fibre fabrication process due to the potential distortion that can be introduced when exposing the structure to high temperatures. Such heating is further complicated when internal air-structures are introduced into the preform- such as in Microstructured Polymer Optical Fibre (MPOF) preforms. The aim of this study was thus to investigate heat transfer in an MPOF preform. The effect of air-structure was studied using both numerical heat transfer simulations and preform heating experiments. A two-dimensional conductive heat transfer model with surface radiation was used in simulating the transient heat transfer in MPOF preforms with the results compared to those for a solid preform. It was found that relatively long heating times were required to reach a uniform temperature distribution within a preform, and that depending on the preform’s air fraction its centre could heat up either faster or slower than a solid preform. Experimental tests where both a solid and an air-structured preform were heated in a drawing furnace with internal temperatures measured across the preform, confirmed the findings from the numerical simulations. 1