People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kolosov, Oleg Victor
Lancaster University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Determination of electric and thermoelectric properties of molecular junctions by AFM in peak force tapping modecitations
- 2022Low Thermal Conductivity in Franckeite Heterostructurescitations
- 2022Thermoelectric properties of organic thin films enhanced by π-π stackingcitations
- 2021Thermoelectric voltage modulation via backgate doping in graphene nanoconstrictions studied with STGM
- 2021SCANNING THERMAL MICROSCOPY OF 2D MATERIALS IN HIGH VACUUM ENVIRONMENT
- 2020Scale-Up of Room-Temperature Constructive Quantum Interference from Single Molecules to Self-Assembled Molecular-Electronic Filmscitations
- 2020Direct mapping of local Seebeck coefficient in 2D material nanostructures via scanning thermal gate microscopy
- 2019Visualisation of subsurface defects in van-der-Waals heterostructures via 3D SPM mapping
- 2018Geometrically Enhanced Thermoelectric Effects in Graphene Nanoconstrictionscitations
- 2018Mechanical Properties of Advanced Gas-Cooled Reactor Stainless Steel Cladding After Irradiationcitations
- 2017Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in aircitations
- 2017Structural and electrical characterization of SiO2 gate dielectrics deposited from solutions at moderate temperatures in air
- 2017Correlation of nano-scale electrical and topographical mapping of buried nanoscale semiconductor junctions
- 2017Imaging subsurface defects in WS2/WSe2 CVD flakes via Ultrasonic Force Microscopies
- 2017Subsurface imaging of stacking faults and dislocations in WS2 CVD grown flakes via Ultrasonic and Heterodyne Force Microscopy
- 2017Characterisation of local thermal properties in nanoscale structures by scanning thermal microscopy
- 2017Subsurface imaging of two-dimensional materials at the nanoscalecitations
- 2015Nanometre scale 3D nanomechanical imaging of semiconductor structures from few nm to sub-micrometre depthscitations
- 2014Graphitic platform for self-catalysed InAs nanowires growth by molecular beam epitaxycitations
- 2014Nanomechanical morphology of amorphous, transition, and crystalline domains in phase change memory thin filmscitations
- 2014Nanothermal characterization of amorphous and crystalline phases in chalcogenide thin films with scanning thermal microscopycitations
- 2014How Deep Ultrasonic and Heterodyne Force Microscopies Can Look at the Nanostructure of 2D Materials?
- 2013Atomic force acoustic microscopy
- 2005Application specific integrated circuitry for controlling analysis of a fluid
- 2005Multiparameteric oil condition sensor based on the tuning fork technology for automotive applicationscitations
- 2004Application specific integrated circuitry for controlling analysis of a fluid
- 2003Local probing of thermal properties at submicron depths with megahertz photothermal vibrations.citations
- 2002Nanometer-scale mechanical imaging of aluminum damascene interconnect structures in a low-dielectric-constant polymer.citations
- 2000Nanoscale elastic imaging of aluminum/low-k dielectric interconnect structures
Places of action
Organizations | Location | People |
---|
article
Nanoscale elastic imaging of aluminum/low-k dielectric interconnect structures
Abstract
<p>A new characterization tool based on ultrasonic force microscopy (UFM) has been developed to image the nanometer scale mechanical properties of aluminum/low-k polymer damascene integrated circuit (IC) test structures. Aluminum and polymer regions are differentiated on the basis of elastic modulus with a spatial resolution ≤10 nm. This technique reveals a reactive-ion etch (RIE)-induced hardening of the low-k polymer that is manifested in the final IC test structure by a region of increased hardness at the aluminum/polymer interface. The ability to characterize nanometer scale mechanical properties of materials used for IC back-end-of-line (BEOL) manufacture offers new opportunities for metrological reliability evaluation of low-k integration processes.</p>