People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Keulen, Fred
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Simultaneous topology and deposition direction optimization for Wire and Arc Additive Manufacturingcitations
- 2019A mold insert case study on topology optimized design for additive manufacturing
- 2019Topology optimization of an injection mold insert with additive manufacturing constraints
- 2019Improving the manufacturability of metal AM parts
- 2016Optimizing front metallization patternscitations
- 2011Topology optimization of planar shape memory alloy thermal actuators using element connectivity parameterization
- 2008Modeling of shape memory alloy shells for design optimization
- 2008Sensitivity analysis of shape memory alloy shells
- 2007Gradient-based design optimization of shape memory alloy active catheters
- 2007Design optimization of shape memory alloy active structures using the R-phase transformation
- 2006Sensitivity Analysis and Optimization of a Shape Memory Alloy Gripper
- 2006Uncertainty-based Design Optimization of Shape Memory Alloy Microgripper using Combined Cycle-based Alternating Anti-optimization and Nested Parallel Computing
- 2006Sensitivity Analysis of Shape Memory Alloy Shells
- 2006Topology Optimization of Shape Memory Alloy Actuators using Element Connectivity Parametriztion
- 2005Analysis and Design Techniques for Shape Memory Alloy Microactuators for Space Applications
Places of action
Organizations | Location | People |
---|
article
Sensitivity analysis of shape memory alloy shells
Abstract
This paper presents procedures for efficient design sensitivity analysis for shape memory alloy (SMA) structures modeled with shell elements. Availability of sensitivity information at low computational cost can dramatically improve the efficiency of the optimization process, as it enables use of efficient gradient-based optimization algorithms. The formulation and computation of design sensitivities of SMA shell structures using the direct differentiation method is considered, in a steady state electro-thermo-mechanical finite element context. Finite difference, semi-analytical and refined semi-analytical sensitivity analysis approaches are considered and compared in terms of efficiency, accuracy and implementation effort, based on a representative finite element model of a miniature SMA gripper.Keywords: Shape memory alloys; Semi-analytical design sensitivities; Finite differences; Fast reanalysis