People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Keulen, Fred
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2022Simultaneous topology and deposition direction optimization for Wire and Arc Additive Manufacturingcitations
- 2019A mold insert case study on topology optimized design for additive manufacturing
- 2019Topology optimization of an injection mold insert with additive manufacturing constraints
- 2019Improving the manufacturability of metal AM parts
- 2016Optimizing front metallization patternscitations
- 2011Topology optimization of planar shape memory alloy thermal actuators using element connectivity parameterization
- 2008Modeling of shape memory alloy shells for design optimization
- 2008Sensitivity analysis of shape memory alloy shells
- 2007Gradient-based design optimization of shape memory alloy active catheters
- 2007Design optimization of shape memory alloy active structures using the R-phase transformation
- 2006Sensitivity Analysis and Optimization of a Shape Memory Alloy Gripper
- 2006Uncertainty-based Design Optimization of Shape Memory Alloy Microgripper using Combined Cycle-based Alternating Anti-optimization and Nested Parallel Computing
- 2006Sensitivity Analysis of Shape Memory Alloy Shells
- 2006Topology Optimization of Shape Memory Alloy Actuators using Element Connectivity Parametriztion
- 2005Analysis and Design Techniques for Shape Memory Alloy Microactuators for Space Applications
Places of action
Organizations | Location | People |
---|
conferencepaper
Design optimization of shape memory alloy active structures using the R-phase transformation
Abstract
This article illustrates the opportunities that combining computational modeling and systematic design optimization techniques offer to facilitate the design process of shape memory alloy (SMA) structures. Focus is on shape memory behavior due to the R-phase transformation in Ni-Ti, for which a dedicated constitutive model is formulated. In this paper, efficient topology and shape optimization procedures for the design of SMA devices are described. In order to achieve fast convergence to optimized designs, sensitivity information is computed to allow the use of gradient-based optimization algorithms. The effectiveness of the various optimization procedures is illustrated by numerical examples, including the design of a miniature SMA gripper and a steerable SMA active catheter. It is shown that design optimization enables designers of SMA structures to systematically enhance the performance of SMA devices for a variety of applications. ; Department of Precision and Microsystems Engineering ; Mechanical, Maritime and Materials Engineering