People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Serdeczny, Marcin
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023Computational analysis of yield stress buildup and stability of deposited layers in material extrusion additive manufacturingcitations
- 2022Numerical Predictions of Bottom Layer Stability in Material Extrusion Additive Manufacturingcitations
- 2022A Numerical Investigation of the Inter-Layer Bond and Surface Roughness during the Yield Stress Buildup in Wet-On-Wet Material Extrusion Additive Manufacturing
- 2021Stability and deformations of deposited layers in material extrusion additive manufacturingcitations
- 2020Influence of Fibers on the Flow Through the Hot-End in Material Extrusion Additive Manufacturingcitations
- 2020Influence of Fibers on the Flow Through the Hot-End in Material Extrusion Additive Manufacturingcitations
- 2018Numerical prediction of the porosity of parts fabricated with fused deposition modeling
- 2018Numerical Modeling of the Material Deposition and Contouring Precision in Fused Deposition Modeling
- 2018Numerical Study of the Impact of Shear Thinning Behaviour on the Strand Deposition Flow in the Extrusion-Based Additive Manufacturing
Places of action
Organizations | Location | People |
---|
document
Numerical prediction of the porosity of parts fabricated with fused deposition modeling
Abstract
In this paper, we study the effect of the printing parameters, namely the layer thickness and the strand-to-strand distance, on the porosity of components produced with Fused Deposition Modeling (FDM). The FDM process is based on the extrusion of a melted material through a nozzle, which forms a 3D object, layer by layer from the subsequent deposition of strands. Previous numerical modeling and experimental studies have showed that the cross-section of the strands depends on the printing parameters. Using computational fluid dynamics simulations, we predict the shape of the cross-sections of multiple strands printed next to each other, and we estimate the porosity of the part. The results of this study show that the porosity of the parts produced by FDM can be controlled by adjusting the printing parameters.