Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vanderzande, Djm

  • Google
  • 3
  • 24
  • 7

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2013Ester-functionalized poly(3-alkylthiophene) copolymers : synthesis, physicochemical characterization and performance in bulk heterojunction organic solar cellscitations
  • 2011Thermal stability of poly[2-methoxy-5-(2’-phenylethoxy)-1,4-phenylene vinylene] (MPEPPV):fullerene bulk heterojunction solar cellscitations
  • 2009Design and Synthesis of Functionalized Regio regular Poly(3-hexylthiophene) based Copolymers and Application in polymer : fullerene Bulk Heterojunction solar cells7citations

Places of action

Chart of shared publication
Zhao, J. Jianfeng
2 / 2 shared
Dhaen, J.
1 / 9 shared
Janssen, Raj René
2 / 27 shared
Campo, Bj
2 / 2 shared
Oosterbaan, Wd
2 / 2 shared
Bolink, Hj
1 / 2 shared
Kesters, J.
2 / 10 shared
Manca, Jv Jean
2 / 2 shared
Lutsen, Laurence
3 / 93 shared
Gilot, J. Jan
2 / 3 shared
Maes, W.
1 / 7 shared
Assche, G. Van
2 / 4 shared
Bertho, S. Sabine
2 / 2 shared
Bolsee, Jc
1 / 1 shared
Bevk, D.
1 / 3 shared
Wienk, Mm Martijn
1 / 16 shared
Vandenbergh, J. Joke
1 / 1 shared
Van Mele, B.
1 / 20 shared
Spoltore, D.
1 / 3 shared
Maes, Wouter
1 / 58 shared
Esiner, S. Serkan
1 / 1 shared
Conings, Bst Bert
1 / 1 shared
Cleij, Tj
1 / 1 shared
Janssen, René A. J.
1 / 151 shared
Chart of publication period
2013
2011
2009

Co-Authors (by relevance)

  • Zhao, J. Jianfeng
  • Dhaen, J.
  • Janssen, Raj René
  • Campo, Bj
  • Oosterbaan, Wd
  • Bolink, Hj
  • Kesters, J.
  • Manca, Jv Jean
  • Lutsen, Laurence
  • Gilot, J. Jan
  • Maes, W.
  • Assche, G. Van
  • Bertho, S. Sabine
  • Bolsee, Jc
  • Bevk, D.
  • Wienk, Mm Martijn
  • Vandenbergh, J. Joke
  • Van Mele, B.
  • Spoltore, D.
  • Maes, Wouter
  • Esiner, S. Serkan
  • Conings, Bst Bert
  • Cleij, Tj
  • Janssen, René A. J.
OrganizationsLocationPeople

article

Thermal stability of poly[2-methoxy-5-(2’-phenylethoxy)-1,4-phenylene vinylene] (MPEPPV):fullerene bulk heterojunction solar cells

  • Zhao, J. Jianfeng
  • Wienk, Mm Martijn
  • Janssen, Raj René
  • Vandenbergh, J. Joke
  • Kesters, J.
  • Van Mele, B.
  • Manca, Jv Jean
  • Lutsen, Laurence
  • Spoltore, D.
  • Maes, Wouter
  • Esiner, S. Serkan
  • Assche, G. Van
  • Vanderzande, Djm
  • Bertho, S. Sabine
  • Conings, Bst Bert
Abstract

To improve the thermal stability of polymer:fullerene bulk heterojunction solar cells, a new polymer, poly[2-methoxy-5-(2'-phenylethoxy)-1,4-phenylenevinylene] (MPE-PPV), has been designed and synthesized, which showed an increased glass transition temperature (Tg) of 111 °C. The thermal characteristics and phase behavior of MPE-PPV:[6,6]-phenyl C61-butyric acid methyl ester ([60]PCBM) blends were investigated by means of modulated temperature differential scanning calorimetry and rapid heating–cooling calorimetry. The thermal stability of MPE-PPV:[60]PCBM solar cells was compared with devices based on the reference MDMO-PPV material with a Tg of 45 °C. Monitoring of the photocurrent–voltage characteristics at elevated temperatures revealed that the use of high-Tg MPE-PPV resulted in a substantial improvement of the thermal stability of the solar cells. Furthermore, a systematic transmission electron microscope study of the active polymer:fullerene layer at elevated temperatures likewise demonstrated a more stable morphology for the MPE-PPV:[60]PCBM blend. Both observations indicate that the use of high-Tg MPE-PPV as donor material leads to a reduced free movement of the fullerene molecules within the active layer of the photovoltaic device. Finally, optimization of the PPV:fullerene solar cells revealed that for both types of devices the use of [6,6]-phenyl C71-butyric acid methyl ester ([70]PCBM) resulted in a substantial increase of current density and power conversion efficiency, up to 3.0% for MDMO-PPV:[70]PCBM and 2.3% for MPE-PPV:[70]PCBM.

Topics
  • density
  • polymer
  • phase
  • glass
  • glass
  • thermogravimetry
  • glass transition temperature
  • differential scanning calorimetry
  • current density
  • ester
  • power conversion efficiency