People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Goovaerts, E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2021Sensing the framework state and guest molecules in MIL-53(Al) via the electron paramagnetic resonance spectrum of V-IV dopant ionscitations
- 2021Relaxation mechanisms in ultra-low damping Fe80Co20 thin filmscitations
- 2008Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: fullerene solar cells
- 2006Single-ion and Molecular Contributions to the Zero-field Splitting in an Iron-(III)-oxo Dimer Studied by Single Crystal W-band EPRcitations
- 2001Spectroscopy on polymer-fullerene composites and photovoltaic cellscitations
Places of action
Organizations | Location | People |
---|
book
Effect of temperature on the morphological and photovoltaic stability of bulk heterojunction polymer: fullerene solar cells
Abstract
In high performance polymer: fullerene bulk heterojunction solar cells the nanoscale morphology of interpenetrating acceptor:donor materials is optimized through appropriate preparation conditions such as annealing and choice of solvent, but this initial state-of-the-art morphology will not remain stable during long-term operation. We report the effects of prolonged storage at elevated temperatures on both the morphology and the photovoltaic performance for the model systems MDMO-PPV:PCBM and P3HT:PCBM as compared to 'High T-g PPV':PCBM based solar cells, where the 'High Tg PPV' is characterized by its high glass transition temperature (138 degrees Q. In situ monitoring of the photocurrent-voltage characteristics at elevated temperatures, in combination with a systematic transmission electron microscopy (TEM) study and complementary optical spectroscopy, reveals distinct degradation kinetics and morphological changes that indicate the occurrence of different underlying physico-chemical mechanisms. (c) 2008 Elsevier B.V. All rights reserved.