People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kesters, Jurgen
Hasselt University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2021Phosphonium-based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self-assembly and photovoltaic performancescitations
- 2020Phosphonium‐based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self‐assembly and photovoltaic performancescitations
- 2020Phosphonium-based polythiopheneconjugated polyelectrolytes with differentsurfactant counterions: thermal properties,self-assembly and photovoltaic performancescitations
- 2020Phosphonium-based polythiophene conjugated polyelectrolytes with different surfactant counterions: thermal properties, self-assembly and photovoltaic performances
- 2019Ladder-type high gap conjugated polymers based on indacenodithieno[3,2-b]thiophene and bithiazole for organic photovoltaicscitations
- 2018Organic and perovskite solar cells for space applicationscitations
- 2016High-Permittivity Conjugated Polyelectrolyte Interlayers for High-Performance Bulk Heterojunction Organic Solar Cellscitations
- 2016A stability study of polymer solar cells using conjugated polymers with different donor or acceptor side chain patternscitations
- 2016A stability study of polymer solar cells using conjugated polymers with different donor or acceptor side chain patternscitations
- 2015Fluorination as an effective tool to increase the open-circuit voltage and charge carrier mobility of organic solar cells based on poly(cyclopenta[2,1-b:3,4-b′]dithiophene-alt-quinoxaline) copolymerscitations
- 2015Enhanced Organic Solar Cell Stability by Polymer (PCPDTBT) Side Chain Functionalization
- 2015N-acyl-dithieno[3,2-b:2 ',3 '-d]pyrrole-based low bandgap copolymers affording improved open-circuit voltages and efficiencies in polymer solar cells
- 2015Fluorination as an effective tool to increase the open-circuit voltage and charge carrier mobility of organic solar cells based on poly(cyclopenta[2,1-b:3,4-b ']dithiophene-alt-quinoxaline) copolymerscitations
- 2015Combustion deposition of MoO3 films: from fundamentals to OPV applicationscitations
- 2015N-acyl-dithieno[3,2-b2',3'-d]pyrrole-based low bandgap copolymers affording improved open-circuit voltages and efficiencies in polymer solar cellscitations
- 2015Continuous Flow Polymer Synthesis toward Reproducible Large-Scale Production for Efficient Bulk Heterojunction Organic Solar Cellscitations
- 2014Fluorination as an effective tool to increase the open-circuit voltage and charge carrier mobility of organic solar cells based on poly(cyclopenta[2,1-b:3,4-b′]dithiophene-alt-quinoxaline) copolymerscitations
- 2014To combust or not to combust, that's the question
- 2014Enhanced open-circuit voltage in polymer solar cells by dithieno[3,2-b:2′,3′-d]pyrrole N-acylationcitations
- 2014Enhanced open-circuit voltage in polymer solar cells by dithieno[3,2-b:2 ',3 '-d]pyrrole N-acylationcitations
- 2013Ester-functionalized poly(3-alkylthiophene) copolymers: Synthesis, physicochemical characterization and performance in bulk heterojunction organic solar cellscitations
- 2013Ionic high-performance light harvesting and carrier transporting OPV materialscitations
- 2012Improved Photovoltaic Performance of a Semicrystalline Narrow Bandgap Copolymer Based on 4H-Cyclopenta[2,1-b:3,4-b ']dithiophene Donor and Thiazolo[5,4-d]thiazole Acceptor Unitscitations
Places of action
Organizations | Location | People |
---|
book
Enhanced open-circuit voltage in polymer solar cells by dithieno[3,2-b:2 ',3 '-d]pyrrole N-acylation
Abstract
A series of low bandgap copolymers composed of N-acyl-substituted dithieno[3,2-b:2′,3′-d]pyrroles (DTPs) as the electron rich donor constituents (with various alkyl side chain patterns) combined with different electron deficient acceptor building blocks are developed for polymer solar cell applications. Due to the introduction of the N-acyl substituents, the HOMO energy levels of the push–pull copolymers decrease as compared to the N-alkyl-DTP analogues, resulting in an increased open-circuit voltage (Voc) and hence solar cell performance. For an N-acyl-DTP-alt-thieno[3,4-c]pyrrole-4,6-dione (PDTP-TPD) copolymer a bulk heterojunction device with a Voc up to 0.80 V and a power conversion efficiency of 4.0% is obtained, the highest value for DTP-based polymer materials to date. Moreover, by implementation of a conjugated polyelectrolyte cathode interlayer the short-circuit current noticeably increases, enhancing the solar cell efficiency to 5.8%. ; The authors gratefully acknowledge financial support from Hasselt University and the IWT (Flemish government agency for Innovation by Science and Technology). The authors further thank BELSPO for funding the IAP 7/05 network. The reported activity is partly supported by the project ORGANEXT (EMR.INT4-1.2.-2009-04/054), selected in the frame of the operational program INTERREG IV-A Euregio Maas-Rijn. The FWO (Research Foundation Flanders) and SIM (Strategisch Initiatief Materialen vzw) are acknowledged for the M.ERA-NET project "RADESOL" (GA.013.13N) and the program "Solution based Processing of Photovoltaic Modules" (SoPPoM, GA no. 2010-01, including the projects OPvTECH and absCIGS), respectively. V.L. thanks the F.R.S.-FNRS for his Research Associate position. The calculations were performed on the computing facilities of the Consortium des Equipements de Calcul Intensif (CECI), in particular those of the Plateforme Technologique de Calcul Intensif (PTCI) installed in the University of Namur, for which the authors acknowledge financial support of the FNRS-FRFC ...